


Published by:
Ricard Marxer

ISBN: 978-2-9562029-0-5

Credits:
Editors: Angela Dassow, Ricard Marxer, Roger K. Moore
Cover photo: Jarke, Skövde from city hall, Recolored by Ricard Marxer, CC BY-SA 4.0,

https://commons.wikimedia.org/wiki/File:Skövde_from_city_hall.jpg
Proceedings assembled by: Ricard Marxer

Workshop took place in Skvöde, Sweden — August 25-26, 2017

Published online at http://vihar-2017.vihar.org/ — September 21, 2017

Copyright c© 2008 of the cover photo is held by Jarke, Skövde from city hall, Recolored by Ricard Marxer, CC BY-SA 4.0
Copyright c© 2017 of each article is held by its respective authors. All rights reserved.
Copyright c© 2017 of the ISCA Logo is held by the International Speech Communication Association (ISCA). All rights
reserved.
Copyright c© 2017 of the Telekom Innovation Laboratories Logo is held by the Telekom Innovation Laboratories. All rights
reserved.
Copyright c© 2017 of all other content in these proceedings is held by Angela Dassow, Ricard Marxer, Roger K. Moore. All
rights reserved.

https://commons.wikimedia.org/wiki/User:Jarke
https://commons.wikimedia.org/wiki/File:Sk%C3%B6vde_from_city_hall.jpg
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://commons.wikimedia.org/wiki/File:Sk�vde_from_city_hall.jpg
http://vihar-2017.vihar.org/


Workshop Organisation

Organising Committee

Roger K. Moore University of Sheffield, UK

Angela Dassow Carthage College, US

Ricard Marxer University of Sheffield, UK

Benjamin Weiss Technical University of Berlin, DE

Serge Thill University of Skövde, SE

Scientific Committee

Andrey Anikin Lund University

Véronique Auberge Lab. d’Informatique de Grenoble

Timo Baumann Universität Hamburg

Tony Belpaeme Plymouth University

Elodie Briefer ETH Zürich

Nick Cambell Trinity College Dublin

Fred Cummins University College Dublin

Angela Dassow Carthage College

Robert Eklund Linköping University

Julie Elie University of California

Sabrina Engesser University of Zurich

Sarah Hawkins Cambridge University

Ricard Marxer University of Sheffield

Roger Moore University of Sheffield

Julie Oswald University of St. Andrews

Bhiksha Raj Carnegie Mellon University

Rita Singh Carnegie Mellon University

Dan Stowell Queen Mary University of London

Zheng-Hua Tan Aalborg University

Serge Thill University of Skövde

Petra Wagner Universität Bielefeld

Benjamin Weiss TU Berlin

Sponsors
Attendance of the keynote speakers was supported by a grant from the Swedish Academy of Research.

http://www.laboratories.telekom.com
http://www.isca-speech.org/iscaweb/


Proc. 1st Intl. Workshop on Vocal Interactivity in-and-between Humans, Animals and Robots (VIHAR), Skvöde, Sweden, 25-26 Aug 2017

iv



Proc. 1st Intl. Workshop on Vocal Interactivity in-and-between Humans, Animals and Robots (VIHAR), Skvöde, Sweden, 25-26 Aug 2017

Conference Program

Keynotes
1 Interspecies communication: a means of studying the cognitive and communicative abilities of Grey parrots

Irene Pepperberg
2 Towards Real-time Coordination in Human-robot Interaction

Gabriel Skantze
3 Animals, humans, computers, and aliens. Is there anything in common between all their languages?

Arik Kershenbaum
4 The socio-affective glue: how to manage with the empathic illusion of human for robot?

Véronique Aubergé

Day 1
5 Phonetic Characteristics of Domestic Cat Vocalisations

Susanne Schötz, Joost van de Weijer, Robert Eklund
7 Appropriate Voices for Artefacts: Some Key Insights

Roger K. Moore
12 Multimodal breathiness in interaction: from breathy voice quality to global breathy “body behavior quality”

Liliya Tsvetanova, Véronique Aubergé, Yuko Sasa
17 Bases of Empathic Animism Illusion: audio-visual perception of an object devoted to becoming perceived as a

subject for HRI
Romain Magnani, Véronique Aubergé, Clarisse Bayol, Yuko Sasa

22 Animal–Robot Interaction: The Role of Human Likeness on the Success of Dog–Robot Interactions
Maretta Morovitz, Megan Mueller, Matthias Scheutz

27 Cognitive mechanisms underlying speech sound discrimination: a comparative study on humans and zebra finches
Merel A. Burgering, Carel ten Cate, Jean Vroomen

29 Recording Vocal Interactivity among Turtles using AUVs
Nick Campbell, Angela Dassow

Day 2
31 Vocal communication between riders and horses

Åsa Abelin
33 A proposal to use distributional models to analyse dolphin vocalisation

Mats Amundin, Henrik Hållsten, Robert Eklund, Jussi Karlgren, Lars Molinder
35 Development of vocal cord mechanism for a robot capable of infant-like speech and reproducing the pitch of a

babbling and a shout
Tomoki Kojima, Nobutsuna Endo, Minoru Asada

37 Perceptual and acoustic correlates of spontaneous vs. social laughter
Takaaki Shochi, Marine Guerry, Jean-luc Rouas, Marie Chaumont, Toyoaki Nishida, Yoshimasa Ohmoto

42 Robot, Alien and Cartoon Voices: Implications for Speech-Enabled Systems
Sarah Wilson, Roger K. Moore

47 Sound Signal Processing Based on Seq2Tree Network
Weicheng Ma, Kai Cao, Zhaoheng Ni, Xiuyan Ni, Sang Chin

53 Index of Authors

v



Proc. 1st Intl. Workshop on Vocal Interactivity in-and-between Humans, Animals and Robots (VIHAR), Skvöde, Sweden, 25-26 Aug 2017

vi



Proc. 1st Intl. Workshop on Vocal Interactivity in-and-between Humans, Animals and Robots (VIHAR), Skvöde, Sweden, 25-26 Aug 2017

Interspecies communication: a means of studying
the cognitive and communicative abilities of Grey parrots

Irene Pepperberg
Abstract

Pepperberg has been studying the cognitive and communicative abilities of Grey parrots for over 40 years. She will briefly
describe the history of research on avian abilities, the training techniques that she has used to establish two-way communication
with parrots, and the highlights of her work with Alex that were possible because of this communication system. She will
present data on her most recent research on topics such as probabilistic learning and Piagetian tasks that have been carried out
with her current subjects, Griffin and Athena, showing how their intelligence compares with that of human children.

Biography

Pepperberg (S.B, MIT, ’69; Ph.D., Harvard, ’76) is a Research Associate and lecturer
at Harvard. She has been a visiting Assistant Professor at Northwestern University, a
tenured Associate Professor at the University of Arizona, a visiting Associate Profes-
sor at the MIT Media Lab and an adjunct Associate Professor at Brandeis University.
She has received John Simon Guggenheim, Whitehall, Harry Frank Guggenheim, and
Radcliffe Fellowships, was an alternate for the Cattell Award for Psychology, won
the 2000 Selby Fellowship (Australian Academy of Sciences), the 2005 Frank Beach
Award for best paper in comparative psychology, was nominated for the 2000 Weiz-
mann, L’Oreal, and Grawemeyer Awards, the Animal Behavior Society’s 2001 Quest
Award and 2015 Exemplar Award, and was renominated for the 2001 L’Oreal Award
and the 2017 and 2018 Grawemeyer Award. She won the 2013 Clavius Award for
research from St. Johns University. Her research has been supported by the National
Science Foundation (US). Her book, The Alex Studies, describing over 20 years of
peer-reviewed experiments on Grey parrots, was favorably reviewed in publications as
diverse as the New York Times and Science. Her memoir, Alex & Me, a New York
Times bestseller, won a Christopher Award. She has published over 100 scholarly arti-
cles in peer reviewed journals and as book chapters. She is a Fellow of the Animal Be-
havior Society, the American Psychological Association, the American Psychological
Society, the American Ornithologists’ Union, AAAS, the Midwestern Psychological
Society, and the Eastern Psychological Association. She serves as consulting editor for four journals and as previous associate
editor for The Journal of Comparative Psychology.
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Towards Real-time Coordination
in Human-robot Interaction

Gabriel Skantze
Abstract

When humans interact and collaborate with each other, they coordinate their behaviours using verbal and non-verbal signals,
expressed in the face and voice. If robots of the future should be able to engage in social interaction with humans, it is essential
that they can generate and understand these behaviours. In this talk, I will give an overview of several studies that show how
humans in interaction with a human-like robot make use of the same coordination signals typically found in studies on human-
human interaction, and that it is possible to automatically detect and combine these cues to facilitate real-time coordination.
The studies also show that humans react naturally to such signals when used by a robot, without being given any special
instructions. They follow the gaze of the robot to disambiguate referring expressions, they conform when the robot selects
the next speaker using gaze, and they respond naturally to subtle cues, such as gaze aversion, breathing, facial gestures and
hesitation sounds.

Biography

Gabriel Skantze is an associate professor in speech technology at the Department of
Speech Music and Hearing at KTH (Royal Institute of Technology), Stockholm, Swe-
den. He has a M.Sc. in cognitive science and a Ph.D. in speech technology. His
primary research interests are in multi-modal real-time dialogue processing, speech
communication, and human-robot interaction, and is currently leading several research
projects in these areas. He is also co-founder of the company Furhat Robotics, which
develops a social robotics platform to be used in areas such as health care, education
and entertainment.
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Animals, humans, computers, and aliens.
Is there anything in common between all their languages?

Arik Kershenbaum
Abstract

It is often said that one of the greatest unsolved mysteries in biology is the evolution of human language. Somehow, our an-
cestors made a quantum leap from having no language (like all other animals), to having an infinitely complex communication
medium - which no other species displays, even in part. But how can we be sure that animals have no language? What is
the fundamental difference between non-human communication, and fully fledged linguistic ability? Is there some kind of
"languageness" that can be quantified and measured? Some researchers claim that animal communication is nothing more
than an instinctive execution of a set of neural commands. But then, at what point does autonomous computer communication
become a language, rather than just a deterministic execution of commands? In the Search for Extra Terrestrial Intelligence,
this question becomes crucial - would we recognise an alien language even if we heard it? Is it possible that there are lan-
guages so alien that we could never recognise them as such? In this talk, I will explore these ideas using examples from animal
communication and human language (but without examples of alien language) and show how the statistical properties of these
communication systems may - or may not - help distinguish language from nonsense.

Biography

Arik Kershenbaum is the Herchel Smith research fellow in Zoology at the University
of Cambridge, where he researches animal communication from both theoretical and
empirical angles, combining field studies with wolves and dolphins, with computer
simulations of cooperative behaviour. He received his BA in Natural Sciences from
Cambridge, and PhD in behavioral ecology from the University of Haifa, before going
on to be a research fellow at the National Institute for Mathematical and Biological
Synthesis in the USA. He has also worked developing image processing and artificial
intelligence systems for the Israeli aerospace industry.
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The socio-affective glue:
how to manage with the empathic illusion of human for robot?

Véronique Aubergé
Abstract

Is the social robot the result of the artificial intelligence production or of the natural intelligence perception of human? One
main phylogenetic feature of human is to continuously extend his body and environment competences, both cognitively and
technologically. The “augmented self” paradigm has the age of human. Technologies to extend the social space of human, “to
augment the others”, are very old dreams, that can be drawn by the history of speech synthesis premises. However it is only
recently that the social robot becomes a societal desire, without any strong hypotheses able to explain how a smart object can
become perceptively a subject. In this talk we will propose how some non verbal speech primitives, collected from human
sciences explorations, can dynamically manipulate the human relation with the robot by building socio-affective glue, within
ethical background challenges and risks. We will explore some ecological experimental methods implying societal people,
industrial partners and researchers around the users, in order to co-construct together models, smart data and technologies in
the constraints of responsible research and innovations.

Biography

Véronique Aubergé is a CNRS researcher in human sciences at the LIG Lab (Com-
puter Sciences Lab at Grenoble, France) where she heads the Domus Living Lab plat-
form, and she is an associate Professor at the University of Grenoble-Alpes (UGA)
where she directs I3L department. She heads the Chair Robo’Ethics at Grenoble Na-
tional Polytechnics Institute. She has a PhD in Language Sciences and in Computer
Sciences. She was a research engineer at the French Company OROS, and a researcher
at ICP Lab and then at GIPSA Lab until 2012, where she developed cognitive mod-
els, experiments and applications in phonetics, prosody and expressive text-to speech
synthesis. At LIG Lab, she focuses on social robotics as instruments to observe and
to design models on the human interactional behaviors. She develops co-construction
methods for experimenting in Living Lab some real life socio-damaged situations (el-
derly, children at hospital), for which the robot could be a transitory aid in ethical
issues. In particular she is implied in the LIG robotic Social-Touch-RobAir platform
developed within the LIG fablab, and in Emox (Awabot Inc) and Diya One (Partnering Robotics Inc.) robots.
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Phonetic Characteristics of Domestic Cat Vocalisations 
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1 Lund University, Sweden 
2 Linköping University, Sweden 
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1. Introduction 
The cat (Felis catus, Linneaus 1758) has lived around or with 
humans for at least 10,000 years, and is now one of the most 
popular pets of the world with more than 600 million 
individuals [1], [2]. Domestic cats have developed a more 
extensive, variable and complex vocal repertoire than most 
other members of the Carnivora, which may be explained by 
their social organisation, their nocturnal activity and the long 
period of association between mother and young [3]. Still, we 
know surprisingly little about the phonetic characteristics of 
these sounds, and about the interaction between cats and 
humans. 

Members of the research project Melody in human–cat 
communication (Meowsic) investigate the prosodic 
characteristics of cat vocalisations as well as the 
communication between human and cat. The first step 
includes a categorisation of cat vocalisations. In the next step 
it will be investigated how humans perceive the vocal signals 
of domestic cats. This paper presents an outline of the project 
which has only recently started. 

 
1.1. Previous studies 
 
The phonetic characteristics of domestic cat vocalisations 
were first described by Moelk [4], and since then a number of 
acoustic characteristics of cat vocalisations have been 
described [5]–[12]. Based on previous descriptions as well as 
analysis of new recordings, an attempt was made to develop a 
comprehensive phonetic typology of domestic cat 
vocalisations, with phonetic definitions. Table 1 shows the 
number of vocalisation types and subtypes identified so far. 
 

Table 1: The most common domestic cat vocalisation 
types and subtypes identified in this study. 

 
Vocalisation type Subtypes 

Meow Mew, Squeak, Moan, Meow, Trill-meow 
Purr - 
Trill Chirrup, Grunt, Trill-meow 
Howl Howl, Howl-growl 
Growl Growl, Howl-growl 
Hiss Hiss, Spit 
Snarl - 
Chirp Chirp, Chatter 

 
Auditory as well as acoustic analyses have been used to 
identify and describe the different types. The descriptions 
include phonetic transcriptions, segmental and prosodic 
features, as well as typical contexts in which the vocalisations 
are used. These types are now used in the project for 

annotating and classifying cat vocalisations (see Figure 1 for 
an example waveform, spectrogram and fundamental 
frequency (F0) contour of a vocalisation, and 
http://meowsic.info for additional video and audio examples. 

 
Figure 1: Waveform (top), spectrogram (mid, bandwidth: 300 
Hz) and F0 contour (bottom) of an example howl-growl. 
 

2. Vocalisation types 
 
The following list is an overview of the vocalisation types we 
have identified so far along with their subtypes. Example 
phonetic transcriptions and typical contexts in which the 
vocalisation types are used are provided for each type.  
 
1. Sounds produced with the mouth closed 

 

a. Purr(ing): a low-pitched regular and probably nasalised 
sound produced during alternating (pulmonic) egressive 
and ingressive airstream: [↓hːr-̃↑r ̃ː h-↓hːr-̃↑r ̃ː h…] or ; 
used when the cat is content, hungry, stressed, in pain, 
gives birth or is dying; probably signals ”I do not pose a 
threat” or ”Keep on doing what you are doing”. 

 

b. trill (chirr, chirrup, grunt, murmur): a short and 
often soft, sometimes a bit harsh nasalised sound rolled 
on the tongue, i.e. a voiced trill: [mhr ̃ː ], [mːr ̃ː ut], [bʀ̃ːh]; 
used e.g. during friendly approach and greeting, and 
during play; grunts (murmurs) are usually more low-
pitched, while trills or chirr(ups) are more high-pitched; 
sometimes cats combine a trill with a meow, producing 
the more complex vocalisation subtype trill-meow 

 

2. Sounds produced with an opening-closing mouth 
 

a. meow (miaow) sounds: Meows can be assertive, 
plaintive, friendly, bold, welcoming, attention soliciting, 
demanding, or complaining, sad or even silent. A meow 
can be varied almost endlessly, and there are several 
subtypes, including the following: 
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i. mew: a high-pitched meow with [i], [ɪ] or [e] 
quality: [mi], [wɪ] or [mɪu]; kittens may use it to 
solicit attention from their mother, and adult cats 
may use it when they are sad or in distress or when 
they signal submissiveness 

 

ii. squeak: raspy, nasal, high-pitched and often short 
mew-like call, sometimes with an [ɛ] vowel quality: 
[wæ], [mɛ] or [ɛʊ], sometimes not ending with a 
closing mouth; often used in friendly requests 

 

iii. moan: with [o] or [u] vowels: [moau] or [mæu]; 
often used when sad or demanding 

 

iv. meow (miaow): a combination of vowels resulting 
in the characteristic [iau] sequence: [miau], [ɛau] or 
[waʊ]; often used in cat-human communication to 
solicit food or get past an obstacle (e.g. a closed 
door or window); adult cats mainly meow to 
humans, and seldom to other cats, so adult meow 
could be a post-domestication extension of mewing 
by kittens 

 

b. trill-meow (murmur-meow): combination of a trill 
(murmur) and a meow: [mrhiau], [mhrŋ-au] or 
[whrrrau]; used in the same contexts as the meow 

 

c. howl (yowl, moan, anger wail): long and often 
repeated sequences of extended vocalic sounds – often 
with [ɪ], [ɨ], [j], [ɤ], [aʊ], [ɛɔ], [aw], [ɔɪ], [ɑo] – usually 
produced by gradually opening the mouth wider and 
closing it again; used in threatening situations, and often 
merged or combined with by growls in long sequences 
with slowly varying F0 and intensity: [ɡʀːawɪjɑoʀː] 

 

d. mating cry (mating call): long sequences of meow-like 
sounds, sometimes similar to the cries of human infants; 
often used in spring during the mating season: [wa͡ːuw], 
[ɹːɪːa͡uː], [mhrːwaːoːuːɪː] or [ʀːwːuːa:u] 

 

3. Sounds produced with an open tense mouth are often 
associated with either offensive or defensive aggression, 
but also with prey-directed vocalisations 

 

a. growl (snarl): long guttural, harsh, regularly and 
rapidly pulse-modulated, low-pitched sounds produced 
during a slow steady exhalation, often with the lip 
curled up and exposed teeth [ɡʀː], with a vocalic [ɹː] or 
rhotic [ʌ], occasionally beginning with an [m]; used to 
signal danger or to warn or scare off an opponent, and 
often intertwined or merged with howls and hisses 
 

b. hiss and spit (the more intense variation): agonistic 
(aggressive and defensive) sounds produced with the 
mouth wide open and the teeth exposed, sounding a bit 
like long exhalations: [hː], [ħː], [çː], [ʃː] or [ʂː]; often an 
involuntary reaction to being surprised by an (apparent) 
enemy; the cat changes position with a startle and breath 
is being forced rapidly through the slightly open mouth 
before stopping suddenly; the spit sounds similar to a 
hiss, but may sometimes begin with a stop – often a t-
like sound: [t͡ ʃː], [ʈ͡ ʂː], [k͜͜͜͡hː] 

 

c. snarl (scream, cry, pain shriek): loud, harsh and high-
pitched vocalic sounds, often with [a], [æ], [aʊ] or [ɛo] 
vowels: [æːo̰]; often produced just before or during 
active fighting, or when in pain 

 

d. chirp and chatter (prey-directed sounds): a hunting 
instinct where cats copy the calls of their prey, e.g. 
when a bird or insect catches their attention (by making 

a sound) and the cat becomes riveted to the prey, and 
starts to chirp, tweet and chatter: 
i. chatter (teeth chattering): unvoiced very quick 

stuttering or clicking sequences of sounds with the 
jaws juddering, [k̟= k̟= k̟= k̟= k̟= k̟=] 

 

ii. chirp: voiced short calls said to be mimicking a bird 
or rodent chirp, sound similar to a high-pitched 
phone ring, tone often rises near the end, [ʔə] or 
reiterated [ʔɛʔɛʔɛ...] 

 

iii. tweet and tweedle: tweets are soft weak chirps, 
often without any clear initial [ʔ] and with varying 
vowel qualities: [wi] or [ɦɛu]; tweedles are 
prolonged chirps or tweets with some voice 
modulation, like tremor or quaver: [ʔəɛəɥə] 

 

Previous pilot studies have revealed that experienced human 
listeners are fairly good at recognizing the vocal signals of 
domestic cats [13], [14]. In future studies we intend to 
investigate this further.  
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Appropriate Voices for Artefacts: Some Key Insights

Roger K. Moore

Speech & Hearing Research Group, Dept. Computer Science, University of Sheffield, UK
r.k.moore@sheffield.ac.uk

Abstract

The 2011 release of Siri hailed the beginning of a sustained
period of impressive advances in the capability and availability
of spoken language technology. Subsequent years saw the ap-
pearance of competitors such as Google Now, swiftly followed
by consumer products such as Amazon Echo. These devices are
seen as the first steps towards more advanced ‘conversational’
artefacts (especially robots). However, evidence suggests that
the usage of such voice-enabled devices is surprisingly low, per-
haps due to noise in the environment, privacy concerns or man-
ual alternatives.. Another possible contributing factor is that
the ubiquitous deployment of inappropriate humanlike voices
for non-living artefacts might deceive users into overestimat-
ing their capabilities, thereby creating a conflict of expectations
that ultimately leads to a breakdown in communications. This
paper highlights the benefits of providing an appropriate voice
for a given artefact based on three separate studies. Results are
presented that demonstrate the positive impact of a non-human
voice and illustrate how ‘appropriateness’ might be measured
objectively. Finally, a worked-example is presented of imple-
menting an appropriate voice for the MiRo biomimetic robot.
It is concluded that these insights could be important for the
design of future generations of voice-enabled artefacts.
Index Terms: appropriate voices, robot voices, speaking arte-
facts

1. Introduction
After more than 40 years of research into spoken language pro-
cessing, the 2011 release of Siri - Apple’s voice-based ‘personal
assistant’ for the iPhone - represented a significant milestone in
bringing speech technology to the attention of the general pub-
lic. It also hailed the beginning of a sustained period of impres-
sive advances in the capabilities of the underlying speech tech-
nologies with dramatic improvements in the accuracy of ‘au-
tomatic speech recognition’ (ASR) and the quality of ‘text-to-
speech synthesis’ (TTS). Subsequent years saw the appearance
of smartphone-based competitors to Siri such as Google Now
and Microsoft’s Cortana, swiftly followed by voice-enabled
consumer products such as Amazon Echo and Google Home.
These latter devices are seen as the first stepping stones towards
more advanced ‘conversational’ artefacts in the future, in par-
ticular ‘automonous social agents’ (such as robots) - see Fig. 1.

Notwithstanding the popularity of contemporary voice-
enabled devices, it appears that actual usage is surprisingly low
(see Fig. 2) [1]. Indeed, it seems that voice interfaces maintain
their notoriety for “fostering frustration and failure” [2].

There are a number of potential explanations for this lack
of genuine take-up: e.g. noise in the environment, privacy con-
cerns or manual alternatives. However, it is argued here that
another contributing factor could be the ubiquitous deployment
of humanlike voices for artefacts that are clearly not human.
Not only is this true of mainstream speech-based systems such

Figure 1: The evolution of spoken language technology appli-
cations from the first ‘voice command’ systems of the 1970s,
through contemporary smartphone-based ‘personal assistants’
(such as Siri) to future ‘autonomous social agents’ (i.e. robots).

Daily

13%

Weekly

13%

Monthly

8%

Once

46%

Never

20%

Figure 2: Speech technology usage on smartphones [1].

as Siri and Echo, but it is also typical to find that robot re-
search laboratories have equipped their devices with off-the-
shelf humanlike speech synthesis on the basis that it’s “natural”
that people should wish to interact with a robot using ‘normal’
speech. The reality is that, when faced with such artefacts, users
tend to be deceived into overestimating their capabilities, creat-
ing a conflict of expectations that ultimately leads to a break-
down in communications (much like the famous ‘uncanny val-
ley’ in robotics [3, 4, 5]) - the opposite of what was intended.

In practice, it would be relatively easy to manage users’ ex-
pectations by giving artefacts an appropriate non-human, rather
than humanlike, voice. In principle, such an approach would
avoid the pitfalls of the ‘uncanny valley’ by aligning an arte-
fact’s visual, vocal and behavioural affordances [6, 7, 8], and
would create a more ‘habitable’ interface in line with the ideas
expressed in Bruce Balentine’s seminal book on the usability of
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spoken language systems: “It’s Better to be a Good Machine
than a Bad Person” [9]. However, for one reason or another,
deploying a robotic voice is still an unpopular idea, and main-
stream speech technology R&D continues to strive for voices
that as as humanlike as possible [10].

This paper brings together three separate studies which
support the general hypothesis that there are benefits to be
gained from providing artefacts with appropriate voices. Sec-
tion 2 reprises experiences using a robotic voice in a genuine
telephone-based travel planning service, Section 3 describes an
experiment that was designed to measure vocal appropriateness,
and Section 4 presents a worked-example of implementing an
appropriate voice for a biomimetic robot. Finally, Section 5
concludes that this paper has brought together a number of im-
portant insights into the potential benefits and practical steps
required to create appropriate voices for artefacts.

2. Experiences with a Genuine
Telephone-based Travel Planning Service

The first study was conducted some years ago while the au-
thor was Head of the UK Government’s Speech Research Unit
(SRU). At the time, there was burgeoning interest in ‘spoken
language dialogue systems’ (SLDS), and there was a need to
collect corpora of speech-based transactions for study. Much of
the SLDS research during that period was based on simulated
applications, so a project was established at SRU to attempt to
collect real conversations in a task-based dialogue - in this case,
a telephone-based travel planning service.

2.1. The Setup

As is common in the SLDS research area, a ‘Wizard-of-Oz’
(WoZ) arrangement was used in which a human operator plays
the role of all or part of a supposedly automated system. How-
ever, what was special about the SRU study was (i) the service
was genuine (in that it was advertised with no mention that it
was experimental or automated or connected with the SRU), and
(ii) callers to the service were handled either by a human opera-
tor (in ‘normal’ mode) or by the same operator with a modified
robotic-sounding voice (in ‘WoZ’ mode).

The enquiry service was configured around a commercially
available route planning software package running on a PC. Its
main feature was its ability to find the shortest and/or quick-
est routes between two locations in accordance with a range
of user-specified preferences. Such software was not readily
available to ordinary members of the public at the time. The
call handling system was configured to operate with two incom-
ing telephone lines - one assigned to the human operator’s nor-
mal voice and one assigned to the robotic voice - and, in order
for there to be minimal differences between the operator’s be-
haviour in both conditions, the same operator was used in each
case. The WoZ voice was created using a ‘voice disguise’ unit
which changed the talker’s pitch and then combined the natural
and altered signals to produce a robotic, yet fully intelligible,
vocal timbre. On receipt of a call, the operator (in normal or
WoZ mode) always used the same introductory announcement:
“Welcome to the route planning service - how can I help you?”.

2.2. Results

The full results were published shortly after the study [11, 12],
but the key outcome was the observation that the robotic voice
had a dramatic effect on the behaviour of the callers (who, im-

mediately upon hearing the robotic voice, genuinely believed
that they had been connected to a fully automated system). The
main effect was that callers in WoZ mode did not engage in
lengthy social exchanges; they did not feel obliged to explain
to the (apparently) automated system why they wanted to travel.
As a consequence, WoZ-based transactions were considerably
more efficient in terms of task completion. In particular, the av-
erage number of words spoken by each caller was reduced from
186 in response to the humanlike voice to just 31 for the robotic
voice: an 83% reduction. Also, disfluencies were reduced by an
order-of-magnitude (see Fig. 3).
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Figure 3: The effect of the operator’s voice on various measures
in the telephone-based travel planning service.

Overall, the results of this study made it clear that merely
changing the timbre of a voice can have a dramatic effect on an
interlocutor’s interactional behaviour. In particular, an appro-
priate robotic voice can successfully reflect the limited social
capabilities of an automated system, thereby facilitating effi-
cient and successful voice-based transactions.

3. Measuring Vocal Appropriateness
The second study reported here was conducted as part of the
EU-funded project Social Engagement with Robots and Agents
(SERA). SERA was aimed at investigating the social accept-
ability of verbally interactive robots and agents, and it con-
ducted long-term field trials in which a Nabaztag robot was
placed in elderly people’s homes to provide advice and encour-
agement about maintaining an active and healthy lifestyle.

Nabaztag is a 23 cm high WiFi-enabled highly-stylised
plastic rabbit with flashing lights on its belly and nose, and ro-
tating ears (see Fig. 4). Subjects described the robot as cute,
comical and somewhat like an animation character (particularly
Pokemon). Feedback from the initial field trials suggested that
the agent must be friendly, likeable, polite and submissive, and
that its voice should be consistent with its visual appearance.

Nabaztag’s voice was generated using a state-of-the-art
text-to-speech synthesiser (provided by Loquendo). Therefore,
in order to meet the requirement that the voice should be con-
sistent with the character of the robot, an experiment was con-
ducted to select the most appropriate voice: the default (adult
male) voice or one that was more childlike. The aim of the ex-
periment was not simply to ask people’s subjective opinions,
but to attempt to measure appropriateness objectively.
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Figure 4: The Nabaztag robot.

3.1. The Experiment

3.1.1. Approach distance

The first part of the experiment investigated an established mea-
sure based on ‘approach distance’. Previous research on ‘prox-
emics’ had suggested that the size of the space between humans
reflects (and influences) their social relationships and their at-
titudes to each other [13, 14]. Other studies found that inani-
mate objects are generally approached closer than other humans
[15], and that users do not always respect a robot’s interpersonal
space (by moving very near to it) [16]. Hence, maintaining a
proper social space between a robot and a human had been hy-
pothesised to express the acceptance of the robot as a social
actor, and that the distance was influenced by the voice [17].

3.1.2. Dislocation perception

The second part of the experiment investigated a new measure
based on ‘dislocation perception’. Inspired by the ‘ventriloquist
effect’ [18], it was hypothesised that an appropriate voice for an
agent could be physically displaced from an artefact and yet
still be perceived as emanating from it: the more appropriate
the voice, the larger the displacement. In order to test this for
the different synthetic voices, the Nabaztag robot was placed
in front of an acoustically transparent screen, and its voice was
played through a hidden loudspeaker 29 cm to the side of the
robot’s ‘mouth’. This meant that, at a distance of 120 cm, the
voice from the robot was at an angle of approximately 12°, well
over the minimum audible angle (MAA) of 1-2° [19].

3.1.3. Subjects

46 normal hearing subjects were recruited for the experi-
ment, all of whom had with little or no prior exposure to
agents/robots. Each subject was exposed to one voice only,
and met the robot in a specially prepared room, with the
agent approximately 3.5 metres from the entrance. Once in
the room, the subject was instructed to keep eye contact with
the robot, and to wait for it to invite them to come closer.
When it was confirmed that they were looking at the robot,
it would say: “Hello, I’ve been expecting you -
please come closer”. The subject then moved towards
the robot, and the approach distance was noted.

The robot would then ask the researcher to offer the subject
a seat, and a chair was placed directly in front (120 cm from
the robot). This ensured that each subject faced the agent at ap-
proximately 0° azimuth and elevation. The robot then delivered

a short speech explaining its role and purpose, finishing with:
“It was so nice of you to offer to help
with this, thank you - now the researcher
would like to ask you a few questions”. The
researcher informed the subject that the experiment was over
and led him/her away from the robot, but then casually asked:
“By the way, where did you think the voice came from - the
robot or somewhere else?”, and the response was noted.

3.2. Results

The results of the ‘approach distance’ experiment are shown in
Fig. 5. As can be seen, the majority of subjects chose to occupy
the robot’s ‘personal space’ regardless of the selected voice.
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Figure 5: The number of subjects that entered the Nabaztag
robot’s ‘intimate space’ (∼30 cm), ‘personal space’ (∼80 cm)
or ‘social space’ (∼120 cm). The differences in the responses
for the two voices are not statistically significant.

The results of the ‘dislocation perception’ experiment are
shown in Fig. 6. In this case, there is a clear (and statistically
significant) difference between the subjects’ responses for the
two voices. As expected, the childlike synthetic voice benefitted
from the ‘ventriloquist effect’ and was perceived by the majority
of subjects to be emanating from the robot.

Overall, the results of this study suggested that, contrary to
expectations, ‘approach distance’ is not a good objective mea-
sure of the appropriateness of a voice to an artefact, whereas
‘dislocation perception’ appeared to be quite effective [20].

4. A Voice for a Biomimetic Robot
The third study reported here concerns the design of a voice for
MiRo: a highly featured, low-cost, programmable robot, with
a friendly animal-like appearance, six senses, a nodding and
rotating head, moveable hearing-ears, large blinking seeing-
eyes, and a wagging tail. Designed and built by Consequential
Robotics Ltd. in collaboration with the University of Sheffield
[21], MiRo has been designed to look like a cartoon hybrid of
a generic mammal (see Fig. 7) and is targeted at a range of ap-
plications such as assistance, companionship, pet therapy and
edutainment. A unique brain-based biomimetic control system
[22, 23] allows MiRo to behave in a life-like way: for example,
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Figure 6: The number of subjects that perceived the dislocation
between the location of the Nabaztag robot and the source of its
voice.

listening for sounds and looking for movement, then approach-
ing and responding to physical and verbal interactions.

Figure 7: The MiRo biomimetic robot.

4.1. The Robot

MiRo is constructed around a differential drive base and a
neck with three Degrees-of-Freedom (DoF). Additional DoFs
include rotation for each ear, tail droop/wag, and eyelid
open/close. All DoFs are equipped with proprioceptive sensors,
and there is an on-board loudspeaker. The robot is equipped
with stereo cameras in the eyes, stereo microphones in the ears
and a sonar range-finder in the nose. Four light-level sensors
are placed at each corner of the base, and two infrared ‘cliff’
sensors point down from its front. Eight capacitive sensors are
arrayed along the inside of the body shell and over the top and
back of the head. Internal sensors include twin accelerometers,
a temperature sensor and battery-level monitoring.

MiRo represents its affective state (emotion, mood and tem-
perament) as a point in a two-dimensional space covering va-
lence (unpleasantness-pleasantness) and arousal (calm-excited)

[24, 25]. Events arising in MiRo’s sensorium are mapped into
changes in affective state: for example, stroking MiRo drives
valence in a positive direction, whilst striking MiRo on the head
drives valence in a negative direction. MiRo’s movements are
modulated by its affective state, and it also expresses itself us-
ing a set of ‘social pattern generators’ that drive light displays,
movement of the ears, tail, eyelids and vocalisation.

4.2. MiRo’s Voice

MiRo’s ability to vocalise was achieved using a real-time para-
metric general-purpose mammalian vocal synthesiser [26] tai-
lored to the physical and behavioural characteristics of the robot
[27]. The overall structure of the synthesis software is based on
a simulation of the flow of energy through a generic mammalian
vocal apparatus with an appropriate body mass.

In order to allow the injection of emotion into the vocali-
sations, key parameters were linked to MiRo’s two-dimensional
affect map. Arousal modulates the airflow rate and, thereby, the
amplitude and tempo of the vocalisations; high arousal leads
to high airflow and short vocalisations (and vice versa). Va-
lence influences the variance of the fundamental frequency and
the voice quality; high valence leads to expressive vocalisation
whereas low valence produces more monotonic utterances. For
example, stroking MiRo’s head increases valence, which leads
to ‘happier’ vocalisations (and a wagging tail).

The outcome of this design approach has been the creation
of an ‘appropriate’ voice for MiRo that is perfectly aligned to the
physical and behavioural affordances of the robot. It thus suc-
cessfully avoids the ‘uncanny valley’ effect mentioned in Sec-
tion 1 and contributes strongly to the effectiveness of MiRo as
an attractive interactive vocal agent.

5. Summary and Conclusion
It has been argued that that one reason users fail to engage suc-
cessfully with speech-enabled devices is the ubiquitous deploy-
ment of humanlike voices for artefacts that are clearly not hu-
man. Hence, it has been hypothesised that users’ expectations
could be better managed by giving artefacts an appropriate non-
human voice, e.g. a voice that is intelligible but robotic.

This paper has brought together three separate studies
which support the hypothesis. First, experiences with a gen-
uine telephone-based travel planning service confirmed that an
appropriate non-human voice can have a dramatic and benefi-
cial effect on the behaviour of naı̈ve users. Second, results of
a study to measure vocal appropriateness objectively revealed
that ‘approach distance’ was not a good measure of the appro-
priateness of a voice to an artefact, whereas ‘dislocation per-
ception’ proved to be quite effective. Third, a worked-example
has been presented of implementing an appropriate voice for a
biomimetic robot.

Overall, this paper has highlighted a number of important
insights into the potential benefits and practical steps required
to create appropriate voices for future generations of voice-
enabled artefacts.
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Abstract 

The face-to-face interaction is a complex dynamic process in 

which the interactants are mutually, continuously and 

reciprocally sharing with each other vocal and non-vocal 

information. This multimodal information has been defined as 

relevant to the speakers’ interpersonal intimacy degree in the 

relation process (“socio-affective glue”). Otherwise, the human 

multimodal intimacy cues dynamics is a crucial aspect of the 

analysis of the human socio-affective behavior. To address this 

point, our study is based on the EEE corpus involving 

spontaneous dialogs between an elderly and a smart home 

control robot whose vocalizations are primitive pure prosodic 

expressions. The gradually increasing socio-affective gluing 

(intimacy) effect of the robot’s vocalizations has been shown in 

previous studies. The utterances produced by the subjects are 

imposed commands (smart home orders). However, the 

elderly’s vocal and non-vocal behavior changes gradually 

throughout the experiment by varying in breathiness, 

commands paraphrasing, and non-vocal cues, which we 

suppose could be meaningful for the nature of the human-robot 

relation. In this study, the communication dynamics is observed 

as an overall behavior. Accordingly, we suggest that the 

breathiness dynamics could be superposed, in the dialog time, 

to the dynamics of both the morpho-lexico-syntactical style and 

the proxemic cues (as postural proximity and gaze direction). 
 

Index Terms: breathiness, socio-affective “glue,” multimodal 

interaction, Human-Robot Interaction (HRI) 

1. Introduction 

Nowadays, one of the crucial aspects in the field of human-

robot interaction is to provide the robot with acceptable and 

ethical interactional behavior so that it could be a part of the 

human social environment. In order to address this point, one 

of the approaches used in the research field is to focus on the 

robot recognition (detection and analysis) of the human speaker 

vocal and non-vocal behavioral cues observed during the 

interaction process (see [1] for an overview).  

In terms of vocal behavior, it is well known that an 

important quantity of information about the speakers’ affective 

state is likely to be discerned throughout the one’s vocalizations 

and this phenomenon is observed in both human and animal 

species [2]–[4]. Accordingly, one utterance (even as small as 

the burst “eh”) could be vocalized differently to express quite a 

different meaning [5], and so, quite a different affective state 

[6]. Acoustically, this kind of subtle affective vocal information 

is given by the expression style, namely the speech prosody [2]. 

Moreover, regarding social relations, the prosodic cues have 

been reported in the literature as an important vocal aspect 

indicating the speaker’s attitude toward his or her interactional 

partner [5]. Thus, the prosody has been shown as a  relevant 

factor in the establishment of an interpersonal connection 

between the interactants and this process of connectedness, 

which is called socio-affective “glue” [7], is based on an 

altruistic bond built according to the principles of mutual social 

grooming [8]. Nonetheless, the affective function of the 

prosodic expressiveness is unlikely to be related to its phonetic 

parameters [9], [10], but to a 4th prosodic dimension known as 

voice quality [11]. According to the findings, the voice quality 

refers to a specific folds’ functioning/vibration (more or less 

folds openness than for modal speech), which seems to be led 

by the speaker affective state [12] and is reported as having 

social signaling functions [9]. One particular voice quality (see 

[13] for an overview) – the breathy voice quality (also known 

as breathy phonation) – is reported in the literature as the vocal 

manifestation of the interpersonal intimacy and caring [12]–

[17], namely the highest degrees of altruistic gluing between the 

interactants. 

According to the literature, a variety of non-vocal behaviors 

are likely to indicate heightened involvement in the interaction 

process. These behaviors have been studied in the field of 

proxemics [18], according to which interactional partners in a 

close relationship tend to unconsciously show their “closeness” 

physically during the interaction process. The proxemics is 

related to the notion of physical intimacy (also known as 

physical closeness or physical distance) [19], and it is observed 

throughout some non-vocal cues such as the postural proximity 

[20] and the gaze direction [21]. Moreover, recent studies 

suggest that the hand gesture could also be related to the 

relational gluing process [22], [23]. Thereby, according to the 

proxemic analysis, the whole body appears as an instrument 

able to express the intimacy level or, as we will refer to it in this 

paper, the “glue level.” 

The cited studies state that both vocal and non-vocal 

behaviors could reflect a kind of intimacy between the 

interactional partners. Thus, it seems that in the case of 

intimacy, the interactional partners create together a mental 

resonation [19], which could merge into a more global process 

as the interpersonal synchrony [24], [25], during which the 

speakers create an interactional dynamics resulting in temporal 

coordination of their behaviors. However, the dynamics 

(whether individual or interpersonal) of the observed 

interactional modalities is rarely taken into account in the 

context of interaction between a human and a robot [1], [26]. 

The purpose of this preliminary study based on the 

observation of spontaneous dialogs between elderly and a robot 

is to show that the dynamics of the vocal breathiness (a tangible 

intimacy indicator) is related in the dialog time to the dynamics 

of the glue building. Moreover, as the prosody dynamics could 

be transmitted and perceived throughout some non-vocal cues 

such as hands and face gesture [27], [28], we suppose that the 
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breathiness dynamics could be directly related to the dynamic 

changes in other vocal and non-vocal intimacy cues such as the 

linguistic form of the commands addressed to a robot, the 

postural proximity and the gaze direction. The affective 

communication could thus be considered as more global 

behavior characterized by the multimodal breathy dynamics. 

2. Background: EEE spontaneous dialogs 

data corpus 

The data used in this study are from the EEE (Elderly Emox 

Expressions) corpus [29] involving spontaneous dialogs 

between the non-anthropomorphic robot Emox (Awabot 

company) and socio-isolated elderly. 

1.1. Study contextualization 

In order to observe how the altruistic relation emerges in a 

micro-social system as elderly, a set of primitive sounds 

supposed to remain a fundamental tool for the mutual building 

of the socio-affective glue has been implemented in the Emox 

robot. Those vocalizations are gradually ordered according to 

their supposed gluing straight (see [29] for more details) in the 

following range: (1) no speech, (2) pure prosodic mouth noises, 

(3) interjections and lexicons with supposed gluing prosody, 

and (4) some subjects’ commands imitations with supposed 

glue prosody, knowing that the imitation, or the so-called 

chameleon effect [30], has a high potential of establishing 

relationships. Those vocalizations notified as the lifeblood of 

the intimacy establishment between interactional partners were 

observed in a dialog context with socio-isolated elderly for 

whom the creation of this dynamic relational process seems to 

be more difficult [31]. In fact, the rate of social isolation 

increases with aging [32] and with the absence of intimate 

interactions [19], which seriously affects the elderly’s 

communication skills, which are an essential part of creating 

and preserving the elderly’s social relationships. In other words, 

the elderly’s abilities to create the relational gluing process are 

damaged [29]. 

1.2. Collecting ecological data with a Wizard of Oz 

experimental scenario and “glue level” retrieval 

The natural elderly-robot dialogs corpus has been collected 

using an experimental Wizard of Oz scenario (see [29] for more 

detailed information), which took place in situ in the Living Lab 

Domus (Computer Sciences Laboratory of Grenoble, France) 

arranged as a smart-home prototype. In this study, elderly 

subjects were invited to use a smart home control robot to carry 

out an imposed list of 31 home automation commands. The 

experiment was followed by an auto-annotation session, which 

took place a few weeks later. During this session, each 

participant was prodded to review, in order to involve his or her 

autobiographical memory [33], the whole experiment’s video 

recording and to qualify their mental state at every moment of 

the interaction with the robot. The auto-annotation session aims 

are multifold, as follows: (1) to define the socio-affective glue 

value by the participant himself / herself while avoiding a 

possible incorrect “expert” interpretation of the collected data, 

(2) to observe the glue global and progressive transformation 

through the interaction process, and also (3) to detect the 

breaking points determining the border lines of each glue level. 

Regarding the collected data, the EEE corpus comprises a 

video and audio data captured by the six ceiling cameras and 

six ceiling microphones in Domus; the participants were also 

equipped with a headset microphone allowing high-quality 

speech sounds collection. Concerning the headset microphone 

use, to avoid every suspiciousness about the fact that speech 

data are recorded, we let the participants think that the Emox’ 

sound capturing sensor was broken and the only way to give 

commands to the home control robot was by using the robot’s 

microphone. The auto-annotation session was also audio 

recorded. All the captured data were temporarily aligned in the 

ELAN software program, and all the speech was 

orthographically transcribed. 

3. Methods 

For this study, we choose from the EEE spontaneous dialogs 

corpus the multimodal data of five elderly subjects, all women 

and French native speakers, from 69 to 89 years old and with 

none or low dependency (corresponding respectively to the 6th 

and 5th grades according to the French elderly dependency scale 

AGGIR [34] grouping the elderly from 1 – very dependent to 6 

– no dependent). The data represent a total of 226 minutes 

(approximately 3.8h) of audio and video records with full 

speech transcription, and a total of 340 commands addressed to 

the robot. 

The audio record from the headset microphone was used to 

analyze the breathiness level of all vocal commands extracted 

from the selected corpus. A number of solutions for automatic 

calculation of the breathiness exist, and their functioning is 

based on different acoustic properties reported in the literature, 

such as H1-A3 (difference between the amplitudes of the first 

harmonic and the third formant) [35], NAQ (Normalized 

Amplitude Quotient of the glottal waveform and its derivative 

waveform) [36], HNR (Harmonics-to-Noise Ratio) [37] or the 

inverse NHR (Noise-to-Harmonics ratio) [38], GNE (Glottal-

to-Noise Excitation ratio, which needs inverse filtering to avoid 

the problem of high-pitched voices) [39], F-aperiodic 

(boundary frequency between harmonic and aperiodic 

components) [40] and even F1F3syn (synchronization of the 

amplitude envelopes of the first and third formant frequency 

bands) [41]. However, those measures either could not be used 

for spontaneous speech analysis or are not adapted for elderly 

high-pitched female voices, which are known as naturally 

breathier (due to the muscular slackening, which increases with 

aging [42]). For that reason, in this study, we proceed by an 

expert labeling of the voice quality (with emphasis on the 

breathiness level) during the vocal production of the 

commands. 

The elderly’s non-vocal behavior has been analyzed on 

video recordings, focusing on proxemics cues as posture 

(subject’s body position), physical proximity (relative to the 

Emox’ position) and gaze direction (head and eyes cast 

direction). These modalities have been annotated according to 

a list of labels (cf. Table 1 below) and only those performed 

during the command time have been considered in our analysis. 

Table 1: List of labels used to annotate the subject’s 

posture, proximity to the robot and gaze direction. 

Modality   Labels   

Posture 

Standing  

Sitting 

Crouching down 

Laying on the bed 

Leaned forward 

Physical Proximity In other room  
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In the same room 

Close (50cm) 

Close+  (25cm) 

Close++ (touch)  

Gaze direction 

Emox 

Commands list 

Object concerned by the command 

Object that is different from the 

object concerned by the command 

Human interlocutor 

 

4. Results 

Global analysis of the data from elderly, concerning the voice 

quality during the commands announcement, showed that the 

commands are produced in either modal or breathy voice. 

However, the observation of the breathiness dynamics 

throughout the experiment revealed that each vocal command 

could be seen as lying along a continuum of breathiness. On this 

continuum, the command voice quality varies globally from 

modal tense (no breathiness) to breathy lax (high breathiness 

level). Specifically, the modal voice (voice without breathiness) 

is associated with the lowest glue levels (when the relation 

between the elderly and the robot is not yet established), and the 

breathy voice is associated with the highest levels of socio-

affective glue (at the end of the experiment when the robot’s 

vocalizations are the most charged in glue). The breathiness 

scale varies in accordance (or even in response) to the robot’s 

gluing vocalizations. In this way, the breathiness dynamics is 

following, in a progressive fashion, the socio-affective glue 

dynamics as it is illustrated in Figure 1 below.  

An analysis consolidating the subjects’ multimodal 

behavioral data compared to both the glue level and the 

previous breathiness observations showed some general 

tendencies in the variations of the linguistic style and the 

proxemic modalities. In accordance with the glue potency 

variation, every separate modality seems to evolve gradually on 

its continuum as shown in Figure 1 below. Figure 1 also 

illustrates the moment of emergence of some proxemic cues, 

which coincided with the first robot’s vocalizations and the 

appearance of the vocal breathiness in the commands. The 

emergence of the cues revealing lower physical and vocal 

distance was the beginning of the closeness manifestation in the 

other modalities. At this moment, the linguistic form started to 

change from the imposed infinitive form into a “we” form 

manifesting a kind of togetherness or “we-ness,” and then, into 

an “you” form that seems to be a characterization of the robot 

like a different entity (which is confirmed by the auto-

annotations noting that at this moment, the robot is “like a 

child,” “like another”). This temporal boundary line is also the 

beginning of the proxemic cues in a manner, which also showed 

lower distancing. Thus, postural proximity and gaze direction 

seem to be dynamically interrelated: the increase of the physical 

distance (decrease of the physical closeness) increases the gaze 

occurrences. 

However, a more detailed data analysis of the behavior of 

every elderly person showed that the glue obtained from the 

auto-annotations arranges the subjects in three distinctive 

groups: (a) those who did not glue (one subject), (b) those who 

moderately glued (two subjects) and (c) those who glued 

strongly (two subjects). Moreover, the different gluing type 

seems to induce different dynamics variations in terms of 

linguistic behavior (breathiness and morpho-lexico-syntactical 

style) and proxemic behavior (postural proximity and gaze 

direction). By taking into account all cited modalities, the three 

profiles could be summarized as follows: 

(a) Low gluing profile: the majority of the produced 

commands are in modal (tense or lax) voice quality 

(91%), and there are no commands emitted with either 

breathy or breathy lax voice. The infinitive structure of 

the command is maintained throughout the whole 

experiment. In terms of proxemic modalities, the 

subject maintains a close distance to the robot (labeled 

as “close”), but she is rarely looking in the direction of 

the robot; her gaze is more often oriented in the 

direction of the list of commands and the object 

concerned by the command. 

(b) Medium gluing profile: these subjects’ voice quality 

varies from modal tense to breathy lax, with a high 

percentage of modal lax and breathy tense commands 

(mean value of 52%). There are very few commands 

forms modifications. The physical distance with the 

robot decreased progressively from “close” at the 

begging through “close/close+” to “close+” at the end 

of the experiment when the gluing level is the highest. 

The gaze direction also changes in a similar way: at the 

experiment’s beginning the preferred gaze targets are 

the list of commands, the object of the command, and 

Emox, while at the end of the experiment, the preferred 

gaze targets are the command object and the 

environment.  

 

Figure 1: The subjects’ multimodal behavior variation in accordance with the robot’s vocalizations and the socio-affective 

“glue level” (experiment’s time)
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(c) High gluing profile: the voice quality variation begins 

from modal to breathy lax, with the highest percentage 

of breathy and breathy lax commands (on average 

60%). The commands form varies accordingly to the 

perceived breathiness in a progressive manner from the 

infinitive to a form with the pronoun “we“ (e.g. “We 

turn on the lights” / “On allume la lumière”) and then 

into a form with the pronoun “you” (e.g. “You turn on 

the lights” / “Tu allumes la lumière”). The proxemic 

behavior is labeled as “close+” all along the 

experiment, the first noticeable closeness appears with 

the “close++” labels in accordance with some body 

leanings forward in the direction of the robot. The 

modal voice quality is associated to highly frequent 

glances in the direction of the list of commands, and the 

breathy voice quality is associated to glances in the 

direction of Emox. 

5. Discussion 

In this study, we tried to investigate the interactional dynamics 

in an elderly-robot interaction context. First of all, we supposed 

that as the breathiness is a proved intimacy vector, its dynamics 

follows the socio-affective glue dynamics. Secondly, we tried 

to show that the breathiness dynamics could characterize the 

rhythm of variation (or the dynamics) of the overall elderly's 

multimodal behavior. In an effort to check those affirmations, 

we analyzed the elderly’s breathiness, linguistic styles and 

proxemic (postural proximity and gaze direction) behavior 

within the context of spontaneous interaction between the 

elderly and a butler robot implemented with socio-affective 

glue vocalizations. 

As shown above, the point in the dialog time of the 

emergence of the first gluing vocalizations of the robot is 

corresponding to the beginning of the changes in the elderly’s 

vocal and non-vocal behavior dynamics. On the one hand, the 

dynamics in the robot’s vocalizations seems to influence the 

human vocal expression in a progressive way. Thus, more the 

robot’s sounds are charged in glue (intimacy), more the elderly 

voice is breathier and more the level of reported glue is higher. 

A possible explanation of the dynamic modification of the 

human vocal behavior according to the robot’s vocalizations 

could be the usual process of synchrony, evolving in the 

interaction process in whom the speakers share an important 

degree of intimacy. On the other hand, the analysis of both the 

breathiness dynamics (as socio-affective glue indicator) and the 

dynamics of the other modalities (command form, postural 

proximity, and gaze direction) reveals that there is no a 

complete temporal correspondence in the modalities changes. 

So, the granularity of our analysis allows us only to refer to the 

global tendencies but does not allow us to observe if two (or 

more) cues tend to change together dynamically. However, we 

could affirm that all the human modalities change in a manner, 

which shows vocally and non-vocally a general tendency to go 

towards more “close” (intimate) behavior.  

The reported differences between the groups of subjects 

indicate that every subject reaches a different glue level, and not 

all the participants reach the highest glue level. The literature in 

the field of human-robot interaction often tends to explain the 

difference in human behavior by the personality traits, but we 

think that in our study the explanation is quite different. Our 

experience with the five elderly subjects lets us suppose that 

this difference in the elderly’s gluing behavior could be 

explained by the “degree” of social isolation. Thus, the profile 

of elderly who glue less with the robot corresponds to the 

elderly who are less isolated.   

Knowing that the elderly subjects who glued the most in the 

experiment modify the form of the commands from the imposed 

list of home automation commands as reported above, we 

expected to find a decreasing number of glances at the list of 

commands when the form is modified. Surprisingly, as shown 

by the results, the occurrences of gazes in the direction of the 

list remain high, even when the commands are in “we” form 

and “you” form. Even if the elderly continue to use the list of 

commands, it seems that this gaze behavior could be explained 

by a phenomenon of cognitive detachment of the list. This 

finding suggests that the speech recognition systems (which 

nowadays are based on lists of commands) have to take into 

account the state of the established relationship between the 

interactants. The first works in this direction have been 

implemented in the robot’s dialog system called SARSI (Socio-

Affective Robotics Speech Interaction), which is constructed 

accordingly to the socio-affective glue paradigm. 

6. Conclusions 

The acoustic breathiness dynamics is in high accordance 

with both the relation dynamics (the “glue life”) and the global 

multi-dimensional elderly behavior. Thus, we observed the 

breathiness not only as a vocal quality but overall as a global 

interactional behavior quality, which could be seen as an 

indicator of the relation nature between the interactants. Some 

previous works point out the existence of body prosody as more 

holistic interactional (verbal and non-verbal) behavior, which is 

essential for the interaction. In this study, we referred to the 

intimate prosodic dimension – the breathiness – in order to 

show that its dynamics could be observed in the dynamic 

variation of the other intimate cues. This overall dynamics is 

important, not only for the interaction process but moreover, for 

the affective, relation process between interactants. In this case, 

the intimacy (namely the socio-affective glue) appears as a 

cognitive motor (as stated in the literature) for the discernable 

global breathiness behavior, which is materialized in what is 

said, how it is said and how it is shown by the proxemic cues as 

the postural proximity and the gaze direction.  
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Abstract 

Ethically, connected objects, in particular, a social robot 
appearance implies to know what are the effects of its design. 
Western societies seem to be about embracing robots’ advent 
in the daily living, so the Human Robot Interaction field starts 
facing the phenomenon we call the “empathic illusion”. It 
supposed to appear while an object is able to switch its socio-
cognitive treatment by humans by becoming a subject to them. 
This phenomenon may change those specific objects’ status 
within the human social sphere. This paper's aim is to start 
exploring the audio-visual design dimension which influence 
our first impressions on an object. These dimensions 
combinations are expected to help better understand the robots 
design’s effects on humans. 

Index Terms: social robotic, HRI, socio-affective prosody, 
perception test, empathic illusion, emotional induction, design 

1. Introduction 

Before being perceived as animated, the social robot inherit of 
the audio-visual (emotional, intentional, social and cultural) 
attributes naturally given to the things [1]. One of the challenges 
of HRI concerns the models allowing to handle the attachment 
phenomenon in human-robot interaction which is initiated by 
these emotional inductions [2][3][4][5]. This attachment builds 
progressively a relation, which can be related eventually as 
companionship, the role given to this object perceived as a 
robot/subject being dependent on the appearance, while a wide 
range of “companion robots” are actually spreading.  

This attachment has been observed along empathic 
reactions for various robots appearances and different socio-
cultural belongings. While humans are asked to be brutal with 
robots like Pleo, a stuffed animal-like robot, they are not 
allowing themselves to hurt it [6]. Indeed, they seem to be 
concerned about the robot, showing empathic reactions with 
physiological markers [7] as same as observed on EEG of 
subjects looking at an android hand being cut [8]. This empathic 
reaction can even bring soldiers to prepare funerals for their 
destroyed tool-robot [9]. Moreover, while Boston Dynamics 
emphasised the technical performance of their Atlas robot by 
hustling and pushing it, in order to challenge its abilities to 
recover from disturbances, they provoked a lot of indignation 
on social networks as the public perceived their demonstration 
as a bullying. Even though that robot is known not to be human 
or alive it still get perceived with an ability to have feelings, 
whereas it obviously cannot: it’s an object.  

A human being involved into an interaction with this kind 
of technology is led to having an empathic perception of 
someone else. The impossibility to escape from this animistic 
perception is what we introduced as the “empathic illusion” 

[10]. The Atlas anecdote perfectly illustrates this phenomenon, 
bringing humans to feel a form of pain for the object. The 
robots’ appearances, regularly given by roboticists, are mostly 
following the human affective sphere [11]. They so can be 
humanoid (like Nao), “petoid” (like Aibo, Karotz), or inherent 
from cartoons characters and cuddly toys (like Pleo, Paro). 
Following up these social robots, its designs seem to focus on 
the emotional impact they can have on the interaction 
pleasantness. Roboticists seem to play down the design’s 
effects while it constantly influence the perception guiding our 
interaction. However, the uncanny valley awareness [12] 
progressively tends to design robots by trying to pull away 
instinctively some chosen shapes, for more abstract ones (like 
Jibo, Diya One), to take them out of the affective sphere. The 
design’s overlayered complexity due to the humanoid form as 
seen for Atlas, is increasing the risk of anthropomorphic 
projection which might affect the empathic effects on the 
humans’ perceptions. 

This paper is a perceptive inception of the design approach, 
for French culture, by looking at the appearances dimension, 
which are making our first impressions on an object that could 
motivate the premise of animism. Instead, to associate the 
appearance with emotions, subjects are asked to associate the 
visual stimuli to acoustic stimuli, which have been referenced 
in previous studies for their relation effects in HRI. We expect 
this perceptual rupture shall be at least partially caused by visual 
primitives. However, we also suppose these visual forms might 
induce different impressions while they are associated with 
acoustic stimuli which are reduced only to meaningful sounds 
but without the lexical content to avoid their semantic 
influence. These sounds are explored on acoustic impressions 
by keeping their socio-affective “pure prosodic” information, 
as they have previously been defined as possible language 
primitives tools to build a non-dominant and altruistic relation, 
which dynamics processes’ results on a socio-affective glue 
[13]. This relation building could thus be considered as the 
beginning of another consideration on which the changes can 
be firstly influenced on the objects impression itself (with its 
whole characteristics: colour, size, voice, etc.)  

The present study is proposed as a perception test based on 
the supposed basics properties of visual appearances (shape, 
colour, size) by associating them with sounds dynamics, by 
hypothesising the gain of animism through their prosody. This 
study is thus settled in an impressionistic approach of audio-
visual combination influencing the perception of an object. 

2. Perception test 

The perception test consists in associating a visual object with 
a sound. The tested parameters and values of the study are 
summarised in Table 1. 
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2.1. Audio stimuli characteristics as references 

One test is composed of 64 different sounds. These audio 
stimuli are pure prosodic mouth noises carrying from which the 
socio-affective information was reproduced by copying the 
prosody referenced in the French E-Wiz corpus [14], previously 
labelled (visually and acoustically as the originally collected 
stimuli were multimodal) and auto-annotated [15][16]. They 
were also perceptively tested on: a cultural discrimination on 
linguistic/control degree criteria [17], the informational values 
perceived intra-culturally [18] and interculturally [19], then 
gradually tested on the socio-affective hypothesis in HRI [11]. 
The selected prosodies were the most universal and resistant 
ones in the previous studies. The sounds were equally produced 
by two French speakers (male and female). Each speaker 
produced 4 natures of pre-lexicalised sounds (“ah”, “euh”, 
“hum”, “waouh”), which prosodies are out of the emotional 
dominance dimension. These 4 prelexical stimuli carry negative 
or positive valence different labels, giving 8 distinctive sounds. 

Table 1: Test parameters’ values and codes  

Test 
parameters 

Values 

Nature ah, euh, hum2, waouh 
Valence positive, negative 
Gender male, female 

F0 original (O), F0 modification ratio (P) 
Amplitude original, normalized (up, down) 

Shape round (R), round-sharp (N), sharp (S)  
Colour white (w), red (r) 

Size big (Bg), small (Sm) 
 

These test stimuli were produced in an acoustically isolated 
room, with a portable H6 zoom microphone (mono, .wav file, 
16000Hz). The recordings present natural variations of the 
signal’s intensity and amplitude due to the recording settings. 
In order to control these variations, the amplitude was 
normalised. The normalisation consisted in amplify or reduce 
the signals with the Audacity tool, to reach the calculated 
average amplitude of all the original acoustic cues, giving 16 
sounds with original and normalised amplitude. 

Finally, the sounds fundamental frequency was also 
modified to change the voice aesthetics, which is itself a part of 
an object design possibly changing our perception. An 
algorithm is applied on the sounds’ F0, to change its value, 
without modifying its prosodic contour, in order to keep the 
same socio-affective information. The female voices were 
augmented in pitch, and inversely for the male voice, to avoid 
the opposite artefacts creation (artefacts as low female voice 
and high pitched man voice). The modifications were pushed 
until a perceptive limit of a human vocal tract production. The 
pitched female voice ratio fluctuate between 1.08 to 1.18, while 
the pitched male voice fluctuate between 0.76 to 0.80. The 16 
previous sounds, into these two aesthetics versions for both 
genders, give the 64 test sounds. 

2.2. Visual stimuli characteristics 

The visual cues to associate to the sounds are 12 figures. Each 
one is determined by three appearance parameters, combined 
out of 3 shapes (round; round-sharp; sharp), 2 colours (white; 
red), 2 sizes (big; small). In psychological approaches, moods 
or emotions were most of the time associated with colour, with 
for instance the red associated with a high arousal [20], 

similarly for both women and men [21]. Hence, the objects 
appearances dimension impressions are also coupled with other 
modalities as audio inputs, carrying emotional semantic. Thus 
the chosen red (RGB code: R: 255 G: 0 B: 0 / HSV: 0° 100% 
100%) is a very intense one with very high saturation and high 
value/brightness. It is opposed to white (RGB code: R: 255 G: 
255 B: 255 / HSV: 0° 0% 100%) which appears by contrast on 
a neutralized grey background (RGB code: R: 189 G: 189 B: 
189 / HSV: 0° 0% 75%).  

The three types of shapes – round, sharp, and “round-sharp” 
(an intermediary blending the two others) – appear in an 
impressionist paradigm. The choice of the sharp shapes is 
motivated by the wide observations of the kiki/bouba 
experiment [22]. This study has brought to light an ideasthesia 
effect [23][24][25] between shapes and words. This kind 
universal sounds impressionism were also depicted for colours 
[26] with relatively resistant phonemes/colours association, 
even synaesthesia in music [27], or textures associated with 
voice quality [28]. But as the colours perception have been 
shown to mostly depend on socio-cultural backgrounds 
discussed as in [29] based on the Sapir and Whorf language 
relativity [30] this dimension is expected to have potential side 
coupled effects with the sounds gender for instance. In the 
present study, each shape has a red and a white prototype. The 
red spiky shape is motivated to be more often matched with 
negative sounds, and white round shapes with positive sounds 
which are most culture-independently shared impressions [22]. 
This might also motivate the design of the animation characters 
or the “companion robots”, which tend to be rounded and white. 
Likewise, smaller things are expected to emit a higher pitched 
sound due to the vocal track congruence [31]. Little shapes are 
so expected to be more often matched with high-pitched 
sounds, and big shapes with low-pitched sounds. 

Complementarily, a short qualitative study has been done 
in parallel to this perception test, in order to determine how 
humans qualify the 12 figures without the audio stimuli. The 11 
participants (not participating in the perception test) firstly 
describe each figure with their own words. Secondly, they did 
an association task on the following propositions: kindness, 
aggressiveness, valency, potency, dominance, aesthetics and 
gender. As results, the participants tend to perceive big shapes 
as more protective, but also more aggressive and dominant than 
little ones. Red shapes had similar effects over the white ones. 
Globally, rounded shapes seem to be more likely inoffensive. 
Only among the little shapes, rounds were sometimes perceived 
bigger than round-sharps (this effect vanished for the big ones). 

3. Experimental settings 

3.1. Stimuli presentation 

The 64 sounds were presented one by one to be associated each 
time with one shape among the 12 visual figures presented all 
at once on a web browser set as in Figure 1. This same interface 
is kept during a test (no figures position’s variation), but the 
figures configuration and the sounds both changed randomly 
between judges. There is also a control subset of judges who 
used one specific set of interface/sound order, which is used to 
verify the eventual learning effects. 

For each stimulus, the judge: 1) click on a “play” button to 
hear the sound (which can repeatedly played until the validation 
of the associated figure), 2) choose the best suiting figure to the 
sound (the figure can be changed until its validation), 3) put a 
grade on the answer’s confidence level using a Likert scale 
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(from 1: lowest - to 5: highest). Then the interface switched to 
the next sound. There are no restrictions on the judges’ socio-
cultural origins criteria. 

 

Figure 1: Screenshot from one of the perception test 
interface’s possible layout. 

The traces collected are: the socio-cultural information; the 
test start and end times; the response reaction times; the 
interface actions traces; the chosen values on each stimulus; the 
interface settings code the interface configuration and sound 
randomisations; the chosen figure/sound couple confidence 
degrees. 

4. Results 

4.1. Collected data samples 

A total of 93 judges composed the test panel, representing 5952 
pairings. They are mostly French, divided into 62% women and 
38% men, with 48% within 25 and 35 years old. The other 52% 
are within 6 to 75 years old. There are as many participants who 
are used to manipulate audio-visual material in their job or spare 
time as the one who does not. Concerning the other cultures 

participants, the test was completed by 17 subjects within 9 
foreign cultures and 3 biculture pairs. As the data samples 
present a wide variation of cultures but a few participants in 
each of them, the analysis will focus only on the 77 French 
subjects. The dataset corresponds to 2668 pairings of 35 
subjects in the unrandomised subset and 2240 pairings of 42 
subjects in the randomised subset. The subset is firstly analysed 
separately and is then merged to control the learning effects on 
the unrandomised subset samples. 

4.2.  Congruence vs. Incongruence phenomenon 

We observed some strong attractions between variables and 
contrastively several discrepancies. Indeed, it appears that some 
sounds have global incompatibilities (i.e a specific shape 
including its colour and size), and some others have specific 
incompatibilities (i.e. only a colour, or only a size, or only a 
colour and size, etc.) In contrast, we see global and specific 
compatibilities. These results could be summarised as follows: 

 Idiosyncratic Congruence / Thematic Congruence 
 Idiosyncratic Incongruence / Thematic Incongruence 

Table 2 illustrates those strong attraction/repulsion 
phenomena. Each cell presents the association percentage and 
the codename (cf. Table 1) for the shape appearance. 

 

 

 

 

 

 

 

Table 2: Strong and weak associations of sounds and appearances for the 77 French judges group 

Normalised 
amplitude only 
(to minimize the 
recording condition 
effects) 

Shape_Color_Size 

Positive Negative 

Strongest 
association 

Weakest 
association 

Strongest 
association 

Weakest 
association 

Female-P 

ah 36% / S_r_Bg 0% / *_w_Sm 19% / R_w_Bg 1% S_r_Bg 

euh 29% / N_w_Sm 1% / S_w_Bg 25% / R_w_Sm 0% *_r_Bg 

hum2 55% / N_w_Sm 0-2% / *_r_* 31% / N_r_Sm 0% / R_*_Bg 

waouh 33% / S_w_Bg ~2% / *_*_Sm 22% / R_w_Bg 3% / S_r_Bg 

Female-O 

ah 27% / S_r_Bg ~3% / *_*_Sm 23% / R_w_* 1% / S_r_Bg 

euh ~23%/ N_w_* ~3% / *_r_* 21% / R_w_Sm ~2% / S_*_Bg 

hum2 42% / N_w_Sm ~3% / *_r_* ~25% / S_*_Sm ~3% / *_*_Bg 

waouh 30% / S_w_Bg ~2% / *_*_Sm ~20% / R_w_* ~4% / *_r_* 

Male-P 

ah 21% / N_w_Bg 1% / S_r_* 23% / R_r_Sm ~1% / S_*_Bg 

euh 25%/ N_r_Bg ~2% / S_*_* ~15% / *_*_Sm ~3% / *_*_Bg 

hum2 25% / N_r_Sm ~1% / S_*_Bg 25% / R_r_Sm ~2%/ *_*_Bg 

waouh 34%/ S_r_Bg ~2% / N_*_* 23% / R_r_Bg ~4% / N_*_Sm 

Male-O 

ah 23% / N_w_Bg ~3% / *_*_Sm 19% / R_r_Sm 0% / S_*_Bg 

euh ~19% / N_*_Bg 1% / S_w_Sm ~18% / R_*_Sm ~1% / S_*_Bg 

hum2 22% / N_*_Bg ~2% / S_*_* 25% / S_r_Sm ~1% / R_*_Bg 

waouh ~25% / S_*_Bg ~2% / *_*_Sm 17% / R_w_Sm 0% / N_r_Bg 
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An asterisk means that one of the appearance dimensions 
(described as shape_color_size) is not significant. This table 
also depicts that congruencies are more often idiosyncratic, 
while incongruences are more often thematic. For example, the 
positive Female-P hum2 have a solid idiosyncratic congruence 
with the little white round-sharp (N_w_Sm), and an also strong 
thematic incongruence with red appearances (*_r_*). One of 
the present perception test motivation was to explore the 
covariance/variance of the audio and visual stimuli parameters. 
As observed in this contingences matrix, this methodology does 
not show an exact correspondence between one acoustic 
parameter and one visual parameter as the dynamics of 
combination could affect the perception differently. In the next 
section, we applied Manovas in the R program in order to 
observe which acoustics dimensions coupling might influence 
the appearances’ choice. 

4.3. MANOVA applications 

In order to explore this potential combination effects, 
MANOVAs were applied with sounds as factors, in 
uncombined condition (on 5 acoustics dimensions: nature, 
valency, gender, amplitude, voice change with F0) then 
exhaustively combined into 2 to 5 dimensions (corresponding 
to 27 sounds vectors). Each of these sounds vectors are crossed 
with the 3 appearance variables (shape, colour, size), also firstly 
uncombined then combined in pairs (shape-colour, shape-size 
and colour-size) then both of three altogether. This leads to 198 
vectors tested for each of the three subsets’ groups (the 
randomised, the unrandomized and the 77 French subjects 
group). All the MANOVAs are tested on the 4 Hotteling’s-
Lawley, Pillai, Roy and Wilks tests and are also analysed by 
decomposition. Moreover, the four applicability conditions 
(including independence and normality) were previously 
verified. 

4.3.1. Uncombined acoustic dimensions behaviors 

At first, the MANOVAs seem to be robust to analyse the 
decomposed dimension effects, but only until two combined 
dimensions, as significant differences between are noticed. But 
over two dimensions, the effects of each parameter are too 
strong to see the changes and so all combinations appeared to 
be significantly linked to the figure choice. Globally, the 
randomised group and the whole French group are showing the 
same characteristics. The unrandomised interface group shows 
the same tendency, but with additional combinations 
minimising the effects of certain choice. By looking at the 
parameter through the MANOVAs decomposition, each sound 
variable (nature, F0, gender, valence and amplitude) presents 
privileged or avoiding appearance parameters.  

Concerning the sounds’ nature, there are no noticeable 
differences, as it always appears as significant in the figure 
choice (p<0.001). We so suppose the information values carried 
in this parameter to be too rich to isolate focused effects on the 
forms’ choices.  

One of the most varying parameters is the F0 giving the 
voice aesthetics changes. The colour choice is preferentially 
associated with this F0 variation (p<0.05) with a stronger effect 
if it is associated with a size variation. However, it is the 
combination (and not only the size) which can explain this 
choice. This observation concerns all the groups, including the 
total participants, adding the foreigners. The gender seems to 
be never significant on the size choice while considering only 
this dimension. Moreover, the size is neither non-significant for 

the unrandomised group, only the colour explains the choice 
from gender (p<0.001). Besides, gender and valence have 
inversed behaviours. While the valence is combined with the 
two others parameters, the colours are explained significantly 
the choice (p<0.001). Besides, the amplitude seems to be not 
significant for the shape choice or its association with colours. 
It is even only justifying the size in the control group. Its effects 
seem to be minimised while combined, which we can consider 
is due to the little changes of the amplitude normalisation. 
Finally, while a choice is highly significant on one appearance 
basing on one acoustic parameter, its effects seem to appear 
strongly to change the other parameters’ behaviours. 

4.3.2. Acoustic dimensions combination effects 

While we consider the effects of two sounds parameters 
combination on the choice of uncombined and combined 
appearance parameters, the major visible effects concern the 
pairings with the F0. While this dimension is combined with 
gender, it is not avoiding the choice of the size alone, and by 
side effects as seen before, a less significant association with 
combined or not shape. This effect is amplified for the 
unrandomised interface group. Moreover, as the effect is only 
minimised for the control group, it is strengthened for the group 
with all participants. The amplitude combined with F0 has a 
minimised effect on the shape and its combination with colours, 
and even for the shape/size pair for the randomised group (more 
than 0.05 significant p-values). For the control group, this effect 
is confirmed with a significant choice only visible on the size. 
Finally, the valence combined with F0 avoids mostly colours 
for all groups. 

5. Conclusions 

In this study, we initiate a research perspective to understand 
what causes an object to become perceived as a subject, by 
looking first for the primitives of multimodal appearances 
which are making our first impressions on an object by 
modifying its socio-cognitive treatment. The data analysis of 
the perception test illustrated a congruence vs. incongruence 
phenomenon between sounds and static shapes: with some pairs 
strongly chosen by the panel and some others systematically 
dodged. This could be the first step to enlighten the empathic 
illusion phenomenon, which is introduced to occur while the 
object is modifying its socio-cognitive state regarding humans 
observing it. As one can hypothesise, a consistency of various 
ontologies including movement (in this case it’s sound/shape 
but it could be other dimensions) is mandatory to induce 
animism. In a second part, MANOVAs showed some strong 
effects on some acoustic parameters as F0 for instance. 
However, the combination between two acoustic features seem 
to have more complex interactions and could be completed by 
other approaches as they might not follow a statistical linear 
regression law as proposed in the MANOVAs. We assume that 
the social robotic field needs to develop solid knowledge about 
these emotional inductions to better understand the attachment 
phenomenon in human-robot interaction and to consider it 
better for the sake of an essential ethical approach.  
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Abstract
Animals, and specifically dogs, are present throughout our so-
cial spaces which nowadays are increasingly populated with
technology. Past research has mostly investigated interactions
between humans and robots, failing to address possible effects
of this technology, on animals, such as canines, in homes and
in particular the possible utility of using robots for animal care.
However, for dog–robot interactions to be successful and ef-
fective, dogs must accept robots and display positive behaviors
towards them. Thus, research must determine possible robot
characteristics such as particular movements or vocalizations
that might be able to facilitate the dog’s trust in and acceptance
of the robot. The goal of the present exploratory study was
to investigate the reaction of dogs to a small humanoid robot
under different conditions of vocalization and movement. Our
main finding from these dog–robot interaction experiments is
that dogs unacquainted with the robot prefer robot vocalizations
to robot movement.
Terms: animal–robot interactions, dog–robot interaction exper-
iments, human likeness

1. Introduction
Dogs live in homes, work with our police and military, and
are present on commercial farms. Already these three specific
groups of dogs have begun to see robotics incorporated into
their traditional living spaces. In regard to the first group, the
technical world has seen much excitement and innovation in the
field of social robotics as our society prepares itself to accom-
modate the needs and social requirements of an aging popula-
tion [1]. As a result, robotic research has started to investigate
the use of social robots in the home for companionship and help
with daily tasks. Dogs in these homes, therefore, have begun to
see robots as part of daily life. Additionally, with more adults
working longer into life [2], many dogs find themselves alone
for significant periods of time. Canine robotic toys, focused
particularly on the social needs of dogs, have been introduced
to help alleviate the loneliness and agitation expressed by these
home-bound dogs [3, 4]. In regard to the second group of dogs,
military and police work has begun to rely on robots for tasks
previously accomplished by dogs [5]. However, until robotics
can utilize the full agility of a dog, both canine and robot will
have to work together to accomplish tasks [6]. Finally, as large
farms increasingly turn to technology and robotics, farm ani-
mals have been increasingly required to interact with this new
technology [7]. Thus, by designing robots specifically to inter-
act with these farm dogs, we can create more synergistic part-
nerships between canine and machine. While these examples of
potential animal–robot interaction differ greatly, they share the
same root requirements. In each of these situations the dog must
accept the robot in order for the interaction to be successful and

effective. Thus, research must determine the robot character-
istics necessary for facilitating the dog’s trust and acceptance.
The goal of this research is to begin to guide designers to create
robots with features and functionalities most beneficial to estab-
lishing and maintaining effective dog–robot interactions, espe-
cially as they relate to the human likeness of the robot. For this
study we focused on two aspects of human behavior, vocaliza-
tion and movement. In the human condition, the anthropomor-
phic robotic agent will vocalize and move like a human, while
in the nonhuman condition the robot will remain silent and sta-
tionary. After the interaction, in both conditions, the robot will
offer the dog a treat. The culmination of the dogs behaviours
throughout the interaction, and its acceptance or rejection of the
treat will be used to determine the eventual success or failure of
the interaction.

2. Previous Work
As the presence of technology grows in our society, fields such
as human–computer interaction (HCI) and human–robot inter-
action (HRI) have expanded to include animal–robot interac-
tion applications. Past research has suggested that the exten-
sion of HCI and HRI into animal–robot interactions could lead
to insights in inter-species relationships in the areas of animal
cognition, conservation, food production, and even expanding
human–computer interaction knowledge [8, 10]. Devices in-
cluding the FIDO vest [13] and Dog PC [14] represent technol-
ogy designed specifically for canine users. Additionally, the Ca-
nine Assisted Robot Deployment (CARD) robots were designed
specifically to work in conjunction with Urban Search and Res-
cue (USAR) dogs [15]. In field tests, CARD was identified as a
“viable technique for delivering a response robot through chal-
lenging terrain to a casualty of an urban disaster” [15]. How-
ever, while the existence of these technologies lends support to
the importance of dog–robot interactions, the device designs fail
to examine the aspects of the interaction that contribute to its
efficacy and success. This question was addressed in research
conducted at Eötvös Loránd University which investigated so-
cial dog–robot interactions and examined the effect of social
signals displayed by an unfamiliar robot [9]. This study con-
cluded that “the level of sociality shown by the robot was not
enough to elicit the same set of social behaviours from the dogs
as was possible with humans, although sociality had a positive
effect on dog–robot interactions.” While not as successful as
a human–dog interaction, by utilizing known social cues, the
success of the interaction increased. Therefore, the research
suggests that the dog is able to recognize and respond to hu-
man social cues from a nonhuman agent. Our study will take
the next step and determine if the use of a robotic agent that
displays humanlike behaviors, namely vocalizations and move-
ment, will increase the success of the interaction compared to a
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robotic agent that does not display humanlike behaviors.

3. Experiment
Based on the work outlined previously, we hypothesized that a
dog would be more likely to accept a treat from and act pos-
itively towards a robot displaying humanlike behaviors than a
robot that fails to display humanlike behaviors. To test our hy-
potheses, we designed a fully between-subjects investigation of
the effects of human-likeness on dog–robot interactions. After
a brief interaction with a robot, which either acted humanlike or
nonhuman-like, the robot offered the dog a treat. Dogs then had
a set amount of time to take the treat. The robot then walked di-
rectly towards the dog. At the conclusion of the interaction, the
human researcher offered the dog a treat. All behaviors during
the entirely of the dog–robot interaction were recorded.

3.1. Materials & Methods

3.1.1. Equipment

• Robot The robotic agent used for this study was the Nao
programmable humanoid robot developed by Aldebaran
Robotics. The robot was programmed using Chore-
graphe to complete a pre-scripted set of vocalizations
and movements. Vocalizations were performed by a fe-
male human voice. Vocalizations include calling out the
dog’s name and using phrases such as “Good dog” and
“Come here, buddy” and “Do you want a treat?”. Move-
ments included, offering the dog a treat by extending
and opening the robot’s hand, waving the robot’s hands,
walking side to side, turning the robot’s head to follow
sounds, and swaying back and forth as part of the Nao’s
Autonomous Life mode. During the first 10 seconds
of the interaction, the robot stands (movement alone),
speaks to the dog using its name (vocalization alone),
and walks side to side while speaking to the dog using
its name (vocalization and movement combined). The
remainder of the interaction includes vocalization and
movement together.

• Dog Treat The dog treat used was the Milk-Bone
MaroSnacks Dog Treats for All Sizes Dogs.

• Study Environment The study environment was an
empty room that contained only the Nao robot. During
the interaction with the robot, only the owner and dog
were present. The researcher was present in the room at
the conclusion of the interaction.

3.1.2. Participants & Procedure

A total of 14 owner/dog teams participated in this study. All
dogs were at least 6 months of age. Dogs remained on a leash
for the entirety of the interaction, but owners were advised to
allow their dog complete freedom to explore the space. Own-
ers were also instructed to avoid all interactions with their dog
to avoid influencing behavior. Upon informed consent owner
and dog entered the study environment. As the dog entered the
room the robot stood. In the human condition, the robot then
continued to talk and move for the next three minutes. In the
nonhuman condition, the robot stood on entering, but remained
silent and still for the same time period. At the end of the time,
the robot raised its arm and opened its hand to offer the dog a
treat. In the human condition, this action included a vocaliza-
tion “Would you like a treat?”. As soon as the dog took the treat,
the robot would walk forward, directly towards the dog. In the

event that the dog did not take the treat, the robot would walk
forward after 3 minutes. After this action, the researcher enters
the room and offered the dog the treat. If the treat was not ac-
cepted, the researcher offered the uneaten treat. If the treat was
accepted, the researcher offered an identical treat. This action
concluded the interaction.

3.1.3. Control

A human researcher offered the dog a treat to ensure that, in the
case the dog did not accept the treat when offered by the robot,
this rejection was not due to the treat itself.

3.1.4. Independent Variable

We manipulated the robot’s human likeness. The human con-
dition used vocalizations and movements to mimic normal
human–animal interactions. The nonhuman condition did not
use any such vocalizations or movements.

3.1.5. Dog Behavior Assessment Measures

After analyzing video from each interaction, we used qualita-
tive assessment measures [11] to categorized three subsets of
behavior types: positive, negative, and neutral. A positive be-
havior corresponds to a behaviour that shows affinity for the
robot, such as smelling the robot, cocking of the head, and ap-
proaching the robot [16]. A negative behavior corresponds to a
behavior that shows a disaffinity for the robot, such as backing
up, growling, head and tail down [17, 16] (Figure 1). A neu-
tral behavior is one that shows neither affinity nor disaffinity
towards the robot, such as smelling the room, laying down or
sitting without looking at the robot, or trying to play with the
owner.

Figure 1: On average dogs in the nonhuman condition dis-
played negative behaviors more often then they displayed posi-
tive behaviors during the interaction

3.2. Results

Each interaction was analyzed using the following questions:
1. Did the dog accept the treat from the robot? From the

human researcher?
2. When did the dog display negative, positive, and neutral

responses during the interaction?

3.2.1. Acceptance of Treat

Out of 14 interactions, a total of 4 dogs, all in the nonhuman
condition, accepted the treat from the robot (Figure 2). This
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Figure 2: All dogs that accepted the treat were part of the non-
human condition

number is equivalent to 28.6% of all dogs who participated in
the study (14 dogs) or 57.1% of dogs who participated in the
nonhuman condition (7 dogs). All dogs in both conditions ac-
cepted the treat from the human researcher.

Table 1: Breakdown of Dog Behavior Based as Percentage of
Entire dog–robot Interaction

Negative Positive Neutral
Human Condition
Mean 38% 14% 48%
SD 0.33129307600 0.09068897300 0.25564644000
SEM 0.12521701288 0.03427720989 0.09662527197
Nonhuman Condition
Mean 4% 41% 54%
SD 0.06020373600 0.14420790000 0.18573626200
SEM 0.02275487335 0.05450546293 0.07020170839

Table 2: Unpaired t-test results for means between conditions

t df

standard
difference
of error p

Negative Means 267.1533 12 0.127 <.0001
Positive Means 419.3349 12 0.064 <.0001
Neutral Means 50.2365 12 0.119 <.0001

3.2.2. Dog Behavior Breakdown

After marking the videos according to the aforementioned cri-
teria, the resulting breakdown showed that overwhelmingly, the
dogs in the human condition displayed more negative behav-
iors than positive behaviors (Figure 3). The mean percentage of
time spent displaying each behavior type during the course of
an interaction can be seen in Table 1. In the human condition,
an average of 44% of the interaction was categorized as a neg-
ative response, while 17% and 39% were categorized as a pos-
itive and neutral response, respectively. In contrast, during the
nonhuman condition, an average of 4% of the interaction was
categorized as a negative response, while 41% and 54% were
categorized as a positive and neutral response, respectively. Us-
ing an Unpaired t-test (Table 2) to compare the means for each
behavior category between the human and nonhuman condi-
tions, it was determined that all differences between conditions

are extremely statistically significant. These mean values show
that the nonhuman condition elicited a far more positive overall
response than the human condition. However, while the posi-
tive response is higher in the nonhuman condition, so is the
neutral response.

Figure 3: 3D Scatter Plot of Dog Behaviors as a Percentage of
Time of dog–robot Interaction.

3.2.3. Initial Behaviors Towards Robot

Table 3 lists the initial behaviors during the first 10 seconds
of the interaction.We see that 29% of the dogs reacted posi-
tively to movement only, 100% acted positively to vocalization
only, 29% acted positively to a combination of vocalization and
movement.

Table 3: Breakdown of dog behaviors during first 10 seconds of
human condition

Movement
Only

(2 secs)

Vocalization
Only

With and Without
Name

(5 secs)

Movement
and Vocalization

Combined (3 secs)
1 negative positive negative
2 negative positive positive
3 negative positive negative
4 positive positive negative
5 negative positive positive
6 positive positive negative
7 negative positive negative

4. Discussion
Will a dog react more positively to a robot that acts human-
like, compared to robot that does not act human-like? Based
on previous research [9] we expected that the dogs would react
more positively to a robot that demonstrated humanlike vocal-
izations and movements than one that did not. However, as can
be clearly seen in Table 1, this hypothesis was not supported.
Dogs in the human condition displayed higher percentages of
negative behaviors than positive behaviors, while dogs in the
nonhuman condition displayed higher percentages of positive
behaviors than negative behaviors. In all cases, the dogs dis-
played positive behaviors to the researcher, by accepting the
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treat. Additionally in the nonhuman condition, the dogs dis-
played higher percentages of neutral behaviors. These behav-
iors represent periods of time where the dog shows no inter-
est in the robot. Robotic designs that will operate in shared
spaces with dogs, without the primary goal of facilitate dog–
robot interactions, may benefit from incorporating these non-
human characteristics, as it would allow the robot to operate
without interfering with the dog’s activity. However, designs
that seek to facilitate dog–robot interactions may not be aided
by implementing nonhuman characteristics alone, as this may
cause a neutral behavior from the dog and impede the interac-
tion. Examining Table 3, we can clearly see the pattern of the
dog’s initial behaviors to the robot. All of the dogs were com-
fortable with the initial vocalizations alone. Many of the dogs
reacted negatively to either the movement alone, or the com-
bination of vocalization and movement. Interestingly, no dog
reacted positively to both the movement alone and the combina-
tion of vocalization and movement. These observations suggest
that vocalizations could be used to elicit a positive response, es-
pecially when the dog’s name or a known command is given in
a human voice. Thus, vocalization may be successful in creat-
ing an initial relationship and allowing for other actions, such
as movement, to happen in the interaction after an initial trust
between robot and dog is formed. However, since this study
combined vocalizations and movement simultaneously after the
first 7 seconds, further research is necessary.

4.0.1. Limitations and Future Directions

This study represents one of the preliminary attempts to study
the effects of human likeness on a dog–robot interaction where
the dog is the primary agent interacting directly with the robot
with no cues from a human counterpart. However, there are a
number of limitations of this study, which illustrate avenues for
additional research in this area.

Population size By and far the largest limiting factor of
this study was the number of participants. With a larger sample
size, this study could be further expanded and factors such
as age, breed, disposition, and whether the dog is treat or toy
motivated could have been analyzed to determine if they effect
the interaction. As most of the dogs lived in the surrounding
area, the population was fairly homogeneous consisting of
small to medium sized family dogs. This population is ideal
when considering dogs who will be exposed to the continued
integration of social robotics in the home. However, as robotics
continue to be incorporated into our society, policy/military
dogs and farm dogs will be expected to interact closely with
robots for working purposes. Thus future work will need to
incorporate these dogs, as they are exposed to different stimuli
and have differing levels of obedience training than family dogs.

Owner–dog interactions Another limitation of this study
was that dogs remained on a leash for the interaction. Had the
dogs been allowed off the leash and to enter the room alone, we
suspect we would have seen different behaviors. Often, when
scared or threatened, the dogs retreated behind their owners.
Additionally they were often confused as to why their owners
were not interacting with them as they ordinarily would have
and displayed more interest in their owner than the robot.

Mode of Evaluation Each of the dog’s interactions during
the study was categorized as positive, negative, or neutral. This
analysis was done using qualitative assessment of behaviour

methods [11]. While there is support for this method of as-
sessment [12], the use of instrumental methods of assessment
[11] may be necessary if the study is expanded for longer inter-
actions with more participants, as manual behavior coding may
no longer be possible.

In terms of future directions, an important next step is to
separate vocalizations and movement. This study showed that
the combination of vocalizations and movement were not suc-
cessful in eliciting a positive behavior from the dog. However,
future work should investigate if the same behaviors would be
found from interacting with a robot that performs only one of
these two actions, or uses vocalizations to establish trust be-
fore movement. Additionally, specifically looking at vocaliza-
tions, further work must be performed to determine if word
choice (i.e., use of words known to the dog, such as its name
or trained commands) or voice type (i.e., male, female, com-
puter) influence dog behavior. Finally, the dogs’ aversion to-
wards the robot’s movements may have been due to the fact that
the movement, while humanlike, did not match perfectly with
normal human behavior. For example, while the act of walking
is humanlike, the robot walked using jerky robotic steps. Ad-
ditionally, while the robot sounded and moved in a humanlike
manner, it did not possess other qualities such as human scent
which dogs ordinarily use to distinguish humans. These incon-
sistencies may have resulted in a form of a canine Uncanny Val-
ley, where the inconsistencies between the robot and a human
prevented the dog from accepting the robot. However, while
these inconsistencies may have resulted in negative responses
at first, it may be that, as the dogs get more comfortable with
this new robotic stimuli over time, they will accept it. Thus a
future study which introduces dogs to robots on multiple occa-
sions would be needed to determine if, after repeated exposure,
the dogs would become more comfortable and accepting of the
robot and respond more positively to a combination of vocal-
ization and movement than to either action alone.

5. Conclusion
The primary aim of this exploratory research was to determine
the effect of human likeness, in the forms of movement and
vocalization, on animal–robot, and specifically dog–robot inter-
actions. From the above results it can be concluded that dogs
more frequently displayed negative behaviors towards human-
like robots and more frequently displayed neutral and positive
behaviors towards nonhumanlike robots. By examining the ini-
tial behaviors displayed, we found specifically that the dogs
displayed more positive behaviors towards vocalizations than
towards movement. Further studies will be required to eval-
uate whether vocalizations compared to non-vocalizations are
preferred, and whether repeated interactions might be able to
mitigate the initially negative effects of movements.
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Abstract 
Speech sound discrimination in different species seems in many 
ways comparable to that of humans. Yet it is unclear what type 
of cognitive mechanisms are involved and whether these are 
shared among species.  

To examine this, we trained human adults and birds (zebra 
finches) to discriminate two pairs of synthetic speech sounds 
that varied either along one dimension (vowel or sex of the 
speaker) or along two dimensions (vowel and speaker 
information needed to be integrated or combined). Subjects 
were assigned to one of the four stimulus-response mappings. 
Once training was completed, we tested generalization to new 
speech sounds that were either more extreme or more 
ambiguous than the trained sounds. Generalization to new 
sounds would reflect if they apply a rule or rely on an exemplar-
based memory.   

Humans learned the one-dimensional mappings faster than 
the two-dimensional mappings. Zebra finches learned all 
mappings equally fast, but showed the same tendency as 
humans. During the test, zebra finches performed in general 
higher on the trained sounds than on the extreme and 
ambiguous test-sounds, whereas humans performed higher on 
the extreme and trained test-sounds than on the ambiguous 
sounds. Humans had great difficulty with the task that required 
combining dimensions to form categories. These results 
demonstrate that birds rely on exemplar-based memory with 
some evidence for rule learning, whereas humans use a rule if 
possible.   

Index Terms: categorization – information-integration – 
speech perception – comparative cognition – songbirds – zebra 
finches – human - XOR 

1. Introduction 
A variety of animal species can be trained to discriminate 
human speech sounds and form speech sound categories [1]. A 
recent study showed that zebra finches maintain discrimination 
between vowels when words were spoken by new speakers 
from the same sex or the other sex, which reveals the capability 
to generalize [2].  

     However, what type of cognitive mechanisms underlie this 
discrimination and generalization and whether animals and 
humans share these mechanisms is yet unclear. Learning to 
categorize sounds can be achieved via different mechanisms, 
such as exemplar-based memorization, prototype learning, rule-
based learning or information-integration (II) [3].  

To examine the cognitive mechanisms underlying auditory 
categorization, we developed a rule-based stimulus-response 
(SR) mapping, wherein the subject either had to discriminate 
the sounds based on the vowel (/i/ vs. /e/) or on the sex (male 
vs. female) of the speaker (hereafter: speaker). In addition, we 
developed two-dimensional SR-mappings: an II task and an 
exclusive-or (XOR) task that required the use of both 
dimensions to classify the stimuli.  

Via a two-alternative forced-choice task with corrective 
feedback, we first trained birds and Dutch adults to categorize 
four sounds based on one or two dimension(s). Once training 
was completed, we tested generalization to new speech sounds 
from a matrix of sounds based on male-female and /e/-/i/ 
continua. These sounds were either more extreme, more 
ambiguous or intermediate between the trained sounds. For 
rule-based memory, we expected faster learning speed on one-
dimensional mappings and generalization to new extreme and 
intermediate sounds. For exemplar-based memory, we expected 
no significant differences in learning speed between the various 
mappings, and similar generalization on ambiguous and 
extreme test-sounds. 

2. Methods 

2.1. Subjects & apparatus 

Thirty-six adult zebra finches from the Leiden University 
breeding colony were individually housed in an operant 
conditioning chamber in a sound-attenuated room. Three 
horizontally aligned pecking sensors in the back wall of the 
cage, a fluorescent lamp, a food hatch, and a speaker were 
connected to an operant conditioning controller that registered 
all sensor pecks. Pecking the middle sensor elicited a sound. 
Depending on the sound, the bird had to peck the left or right 
sensor. A correct response resulted in temporary food access 
and an incorrect response led to a short period of darkness.  

For humans, sixty students from Tilburg University were 
individually tested in a dimly lit sound-attenuated room. After 
a sound was presented through headphones, the participant 
responded by pressing one of two buttons on a response box 
after which they received immediate corrective feedback.  

 

2.2 Stimulus material 

Three stimulus matrices of morphed speech sounds were 
constructed with Tandem-STRAIGHT, each based on four 
different natural speech recordings from an earlier study [2] wet 
and wit spoken by a male and a female speaker. Sounds were 
decomposed into f0 trajectory, a time-frequency and an 
aperiodicity spectrogram, and next female-male continua for 
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wet and wit were created by manually mapping time-frequency 
anchors of matching features in the spectrograms of the two 
sounds. Next, the female-male continua were matched in 
similar way to create wet-wit morphs. Four training-stimuli and 
twelve test-stimuli, including more extreme, ambiguous and 
intermediate sounds were used for all experiments.  

 

2.3 Design & procedure 

The subjects were randomly assigned to one of the four SR-
mappings: based on vowel, speaker, XOR or II. Every task was 
completed by 15 humans and nine birds.  
      All subjects were trained to sort four training sounds into 
two categories (see figures 1 and 2). After performing at >0.75 
for three days (birds) or one training-block of 32 trials 
(humans), the subject was tested on the trained and non-
reinforced test-sounds.  
 
2.5 Analyses 
Learning speed was defined as the number of training trials 
(birds) or trainingblocks (humans) required to reach criterion of 
>0.75 correct. 
     For the test, the proportions ‘correct’ for different sound-
groups were calculated by taking the average scores of the 
proportion of responses to a particular sound group on each side 
of the midline between the differentially reinforced stimuli (e.g. 
taking the average of the proportion of pecks to ‘extreme wit’ 
and ‘extreme wet’ for the vowel test). The proportions correct 
for the trained sounds included non-reinforced trials only.  
 

 
 

Figure 1: Subjects were trained to sort four training sounds 
(Tr1, Tr2, Tr3, Tr4 for the vowel-, speaker- or XOR-task) 
into two categories. Upon reaching criterion they were 
tested on the trained and non-reinforced sounds, including 
intermediate sounds for the vowel (Int) and speaker task 
(Int). In the vowel task, Tr1 and Tr3 were assigned to one 
category and Tr2 and Tr4 to the other category. In the 
speaker task, Tr1 and Tr2 were assigned to one category 
and Tr3 and Tr4 were assigned to the other category. In the 
XOR training, Tr1 and Tr4 were assigned to one category 
and Tr2 and Tr3 to the other category. 

 
 

Figure 2: Subjects were trained to categorize four training 
sounds (Tr5, Tr6, Tr7 and Tr8 for the II-task) into two 
categories. Upon reaching criterion they were tested on 
trained and non-reinforced sounds. Here, Tr5 and Tr7, 
were assigned to one category and Tr6 and Tr8, were 
assigned to the other category. 

3. Results & conclusion 
Humans learned the one-dimensional SR-mappings 
(categorization based on vowel or speaker) faster than the two-
dimensional mappings (the II and XOR task). Zebra finches 
learned all mappings equally fast but showed the same tendency 
as humans. During the test phase, birds usually performed 
higher on the trained exemplars than on the extreme and 
ambiguous test-sounds whereas humans mostly performed 
higher on the extreme and trained test-sounds than on the 
ambiguous ones. These results reflect that birds rely more on 
exemplar-based memory than humans. In the rule-based task 
based on speaker, birds also show generalization for more 
extreme and intermediate sounds. Compared to birds, humans 
showed more generalization in both rule-based tasks. Humans 
had great difficulty with the XOR task, presumably because 
they confused the SR-mapping.  These results demonstrate that 
birds rely on exemplar-based memory with weak evidence for 
rule learning, whereas humans prefer rule-based learning if 
possible. 
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Abstract
This paper is the reflection of a brainstorming session at the
Dagstuhl Seminar 16442 VIHAR in which potential costs and
practical building constraints were made secondary to consider-
ation of emerging technologies that might combine robotics and
animal research. We have identified a practical use-case for an
emerging technology and propose modifications to the devices
that would enable their use in our case. The paper describes how
turtles may be tracked by autonomous devices that (a) provide
a corpus of their behaviour, and (b) eventually help to protect
young turtles by identifying key habitats used by hatchlings.

Index Terms: Autonomous Underwater Vehicles, Turtle be-
haviour, Vocalisations, Image processing, RCNN, Submersible
devices, Tracking-robots, Conservation

1. Introduction
Vocal interactivity is assumed to take place between turtles and
may provide a source of information regarding food locations,
environmental activity regarding predators moving in the area,
location of refuges that the turtles may be using, or changes in
water current, among other possibilities. To date there has been
little research into turtle vocal interaction because of scarcity of
data and difficulties of recording vocal behaviour in situ.

In this paper we propose a method whereby such informa-
tion may be gathered for analysis of the relation between vocal
interaction and animal behaviour. In particular we propose tech-
niques for tracking and recording hatchlings and young turtles
after they have been tagged by a human and when they start
to travel further afield, beyond the range of human observers.
Particularly interesting is the depth information associated with
their dispersal localities since this information cannot be ob-
tained using drone technology.

Previous work has reported success in using Autonomous
Underwater Vehicles (AUVs) for tracking acoustically tagged
fish near Juneau, Alaska [1] . The use of AUVs and a low en-
ergy sensor for tracking jellyfish has also been proposed [2],
suggesting there may be a broader range of applications for fur-
ther developing this technology for use in wildlife research. We
propose a similar device suitable for tracking young turtles af-
ter hatching by following them amongst the dense vegetation
which forms their habitat.

If the turtles were confined to a two-dimensional surface
then the tracking problem could be easily solved by the use
of drone technology, but because the turtles move in a three-
dimensional space, a submersible device is required. As men-
tioned earlier, depth information cannot be obtained using
drones, but it is important information to obtain for learning
about hatchling turtle movement.

Currently many scientists and practitioners in the field
(wildlife biologists and volunteers, citizen scientists etc) are de-

Table 1: Worldwide IUCN chelonian population assessment

Category Species Count Percentage
Extinct 7 3.1%

Critically Endangered 32 14.0%
Endangered 44 19.3%
Vulnerable 58 25.4%

Near Threatened 10 4.4%
Lower Risk 66 29.0%

Data Deficient 11 4.8%

voting much of their time to protecting nesting beaches and the
adult females during egg laying, or rearing hatchlings in head-
starting facilities [3]. These are costly, labor-intensive efforts
and involve much waiting around for eggs to hatch. In spite
of these efforts, populations of most species are continuing to
decline and are at risk of extinction. Table 1 (from [4]) shows
that more than a third of species are endangered, and one of the
major issues yet to be addressed is protecting the hatchling tur-
tles in their first years of life in a natural environment. This has
been a problem due to our inability to track the location of the
hatchlings after they leave their nests. Key questions regarding
hatchling dispersal are a) how far they travel from their nest and
b) at what depths. Additionally, budgetary and time constraints
are restricting our ability to provide further protection to the tur-
tles, but AUVs could aid our conservation efforts by directing
us to the optimal habitats used by dispersing hatchlings.

2. Capturing Turtle Talk
It is known that turtles use vocalisations to communicate [5,6].
High quality ultrasound hydraphones are currently available for
recording these calls and regularly used in cetacean research.
Identifying the turtle vocalisations from among the various
noises found in their environment may be problematic; however
this is a problem that has already been addressed by previous re-
search with Chelodina oblonga turtles [5]. Individuals can be
recorded in the laboratory under a training phase to determine
the vocal repertoire and known vocalisations can be compared
to samples acquired from the natural environment. These tech-
niques can be used for studying any species of turtle.

There may be little need to identify which individuals are
making the particular sounds in order to associate the sounds
with their subsequent behaviour, since the group may respond
to any call from any individual in a consistent way. Our research
therefore principally concerns identifying the sounds that trig-
ger the movements. The body of the work involves collecting
representative data in the wild, recording both acoustic events
and associated movements, and then training statistical classi-
fiers to map between features of the recordings and particular
behavioural patterns.
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3. Incorporating a Mother-Node
To track hatchlings in the first month of their life, small sub-
mersible devices (that we refer to as turtle-tracking robots) can
be adapted for remote use, recording data continuously. Infor-
mation storage on the tracking robot is not a problem but there
is a foreseeable difficulty regarding battery life in extended de-
ployment. A solution can be found by using a mother-node as
a local charging station as well as for data aggregation. Once a
tracking robot can sense that its turtle is inactive, it can ‘ping’
its GPS location, store its depth, and briefly visit the mother-
node for battery replacement, data/information delivery, and de-
bris removal before returning to the pinged location, with some
compensation for potential drift. In this way, a long-term record
of locations and navigation behaviour can be learnt in addition
to the vocal behaviour characteristics.

At hatching, each turtle in the nest is tagged with an RFID
chip using standard procedures [7]. Each turtle-tracking robot
will only ‘follow’ one specific individual from each clutch of
eggs marked but because all will have been RFID tagged, it will
have the ability to record the location of any nearby siblings
at the same time. Multiple devices will be needed for track-
ing individuals in the group. In addition to the hydraphone, the
tracking robot will be fitted with 360-degree image capture. By
knowing the location of its target, the device will use a form
of image processing to maintain minimum distance from its
source, based on perspective. The captured images can later
be used in the laboratory to determine the identification of other
species in the hatchlings’ environment.

In addition to long battery life, an optimal device would
require: navigation ability, image processing facility, GPS and
depth location, etc., in order to associate vocal and bodily activ-
ity with coordinates in three-dimensional space. By including
the ‘mother-node’ in the swarm, and assuming that the pack
doesn’t disperse completely but stays in a relatively closely de-
limited area, the task of sending data back to the researcher can
be performed by the larger coordinating device.

4. A Pied-Piper Robot for Turtle Protection
There are pros and cons to utilising AUVs in wildlife research.
In this section we highlight what we believe are the main con-
cerns and the main benefits that will arise from integrating fields
of robotics and fields of ethology.

There may be concerns regarding invasion of privacy in this
work as there has been debate about the interaction of robotic
devices with species in the wild [8]. For this reason, the pro-
posed AUV would need to maintain a minimum distance from
its target specimen. There is little justifiable concern about
planting the RFID chip in the hatchling as it is already estab-
lished practice [7]. There is a potential for misuse of the tech-
nology for capturing young turtles for the illegal pet trade, but
collecting the eggs would be easier. There may also be a po-
tential danger to other wildlife, for example diving birds which
come into contact with the submerged devices, but the chance
of this actually happening is minimal.

The technology may be put to good use at a later stage of
the research when it can be used as an underwater ‘sheepdog’ to
guide hatchlings to a protected zone or safer location provided
by concerned researchers in the field. In addition to tracking na-
tive species, another application of the turtle-tracking robot is to
identify the locations of invasive turtle species. The technology
may enable the removal of invasive species thereby protecting
the natural habitats for local species.

5. Discussion and Conclusion
In this paper we proposed a system for studying turtle behaviour
underwater. The system is composed of one or more small sub-
mersible devices equipped with sensors for detecting acoustic
events over a range of frequencies, and 360-degree image pro-
cessing around each device. Manually swappable mother-nodes
provide in-situ supplies and collect local data. We detailed the
scope and limitations regarding the movement of the tracker
robots and their ‘relationship’ with their turtle subjects, and we
described how the small AUVs will be able to follow the young
hatchlings and serve a practical use in providing additional in-
formation about the turtle locomotion and location of refuges.

The purpose of the research is to better understand how tur-
tle vocalisations relate to group behaviour and movement within
the environment. The method involves recording a large corpus
of hatchling vocalisations along with data related to their po-
sition in the environment and in the group. The collected data
will form part of a larger study employing statistical procedures
(deep nets, recursive convolutional neural networks etc.,) to find
mappings between the observations. There has been relatively
little understanding of hatchling behaviour because of the re-
moteness of the location in which it typically occurs, but when
this corpus becomes available ethologists will be able to observe
finer details of the behaviour. This is an important tool for the
future of conservation.
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Abstract 
This presentation will discuss a project aimed at studying 
communication between riders and horses with regard to the 
voice. There is a need for detailed description of voice 
communication between the rider and the horse, since this is a 
neglected area in comparison with studies on non-verbal 
communication. On the theoretical basis of the frequency code 
the project will analyze audio and video recordings of 
interactions between riders and horses. Theoretical as well as 
methodological questions will be discussed. 
 
Index Terms: voice, communication, horses, humans 

1. Introduction 
The purpose of this presentation is to discuss a project aimed at 
studying communication between riders and horses with regard 
to the voice. The horses studied are icelandic horses since they 
have four or five paces that are to be separated, both by horse 
and rider. There is therefore a need for detailed communication 
with the horse even at the beginner's level. The study relates to 
communication during riding, working on the ground, and care 
in the stable 

Voice communication is, in this study, mostly about the 
voice of the person towards the horse, but also to some extent 
about the horse's sounds. In riding instructions voice 
communication is often mentioned, in combination with 
weight, leg and rein communication, but voice communication 
is seldomly described in any detail. 

Voice is defined here as the sound produced by the vocal 
cords in the speech organ and which is due to the activity of the 
respiratory organ and the tension and tuning of the vocal cords. 
The voice can be described as light or dark, strong or weak, 
monotonous or varied, rough, hoarse, whispering and more. In 
human language, the voice can express feelings and attitudes, 
identity, physiological state, status and power. 

There is some research on nonverbal (bodily) 
communication between humans and horses and in some cases 
riding instructors [1], [2], [3], [4], [5], but not much research on 
voice communication between humans and horses. The starting 
point for this study is Ohala's [6], so-called frequency code, 
which claims that humans and other animals interpret and 
respond to audio and body signals in similar ways. A high-
pitched voice (light voice) signals smallness, submission or 
friendliness while a low-tone voice (dark voice) signals 
greatness and dominance. In parallel a small, low posture 
signals subjection while a large or elongated posture signals 
greatness and dominance; There is thus a link between body 
language and voice. Voice strength (weak - strong) works in a 
similar way. The frequency code in human language is reflected 
in, for example, how we speak to young children and in the fact 
that emotions are expressed in similar ways in different 

languages of the world through voice and body. There are 
therefore prerequisites for horses being able to understand the 
voice we use when communicating with them. 

2. Research questions 
• How is voice used in communication between riders and 

horses during riding, work on the ground, and care in the 
stable? 

• How does the rider later interpret the horse's reactions to 
the voice? 

 

3. Method 
10 pairs of riders and horses will be video and audio recorded 
for analysis of the rider's voice communication with the horse. 
The riders will be equipped with portable microphones, and 
camcorders will be installed in suitable places. After the 
sessions the riders will be interviewed and recorded. The 
analysis tools are acoustic analysis of voices from audio 
recordings during work and care, complementary analysis of 
the rider's body language and the horse's reactions based on 
video recordings, as well as content analysis of riders' stories of 
experiences during subsequent interviews. 

The audio files are analyzed acoustically with respect to 
level and variation of fundamental frequency, level and 
variation of amplitude as well as vocal cord variation such as 
roughness or whisper. In addition, video recordings from the 
different sessions are analyzed to some extent with respect to 
body language. The riders' voice qualities in interaction with the 
horse are compared with their voice qualities in the interviews; 
The latter voice qualities serve as the baseline for each rider. 

Riders’ perceptions of the horses’ understanding of voice 
modes and words is analyzed through qualitative content 
analysis of the interviews and from the recordings of the work 
and care sessions. Qualitative content analysis means that the 
recordings, both during the work and care sessions and in 
subsequent interviews, are analyzed with regard to what the 
riders tell about the voice communication (cf. Bergström & 
Boréus [7]. Theoretical as well as methodological questions 
will be discussed. 
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Abstract
This paper gives a brief introduction to the starting points of an
experimental project to study dolphin communicative behaviour
using distributional semantics, with methods implemented for
the large scale study of human language.

1. Dolphin communication
Dolphins vocalise and communicate using complex signals of at
least two kinds, whistles and clicks, produced in separate sys-
tems. Most dolphin species produce whistles. Whistles can last
between tens of a millisecond to several seconds and consist of
continuous, narrow-band, frequency-modulated signals. Most
whistles can be found in the range of 2 to 20 kHz [1, 2]. Notable
among whistles are the “signature whistles” which appear to be
individually specific for each dolphin [3]. All dolphins also pro-
duce pulsed signals, or “clicks”. These sounds are presumably
used both for communication and sensing the environment. Typ-
ically the clicks come in trains with inter-click intervals ranging
from few ms to several hundred ms and have most of its sound
energy above the human hearing range [4, 2, 5].

2. More data and better tools
Both clicks and whistles have been studied in detail with respect
to their acoustics, their relation to dolphin behaviour, and their
occurrence patterns. Recent analyses have been able to describe
dolphin whistle patterns using formalisms similar to those used
to describe the morphological patterns of human language in
terms of regularities in the way constituent elements form pat-
terns [6, 7]. How the constituent elements of those patterns
relate to each other, has not been formally described. Doing
this will require much larger data sets than before: for example
the most recent pattern mining experiments are performed on no
more than 25 audio files.

Recent advances in computational hardware make possible
the capture, storage, and analysis of analogue signals on a scale
which was unthinkable even only a few years ago. Simultaneous
advances in the in-memory analysis of streaming data make new
processing models technically attainable. The wide availability
of human linguistic data in speech and text form has made use of
the technical possibilities to build unsupervised learning and dy-
namic on-line analysis models for inferring emerging semantic
patterns in streaming data.

3. An opportunity for distributional models
Distributional analysis was first formulated by Zellig Harris [8]
and such methods have gained tremendous interest due to the
proliferation of large text streams and new data-oriented learning
computational paradigms. Distributional semantic models col-
lect observations of items from linguistic data and infer semantic
similarity between linguistic items based on them. If linguistic

items – e.g. the words grid and distributed – tend to cooccur
– say, in the vicinity of the word computation – then we can
assume that their meanings are related. The primary relations of
interest are replaceability and combinability of items [9]. Dis-
tributional analysis allows us to infer similarities between fun-
damental units, based on their observed occurrences in various
patterns through the computation of second order cooccurrence
relations: not only that a precedes x with some regularity, but
that a and b both frequently occur with x, even if they never
occur together.

4. Aims: a thesaurus of dolphin signals
While we in the current prestudy use methodology originally
developed for the analysis of human language, we refrain from
claiming that dolphins communicate in ways which are human-
like. The task of our project is to find a representation of the
signals vocalised by dolphins which allows us to infer usage
similarities between identified recurring communicative tokens
in dolphin communication. This aim involves a cascade of inter-
connected challenges.

The general task of making sense of continuous signals, as-
suming that they are of a sequential nature, involves three tasks:
segmenting the signal into chunks of suitable level of abstrac-
tion; identifying similarities between such chunks across situa-
tions to recognise fundamental units of interest, corresponding
to words or morphemes in human language; and then to identify
patterns of occurrence among those fundamental units, corre-
sponding to phrases or utterances in human language to be able
to establish similarity of usage of such items. The result of such
a procedure is a library of patterns and a thesaurus of items.

5. Challenges: the hermeneutic circle
individuation Dolphins vocalise without visible articulation
[10, 11, 12]. Separating signals from a a number of vocalising
individuals at the same time without knowing where the speech
from one dolphin ends and another starts will be necessary, but is
a known challenge in the field: ”...Identifying the vocalizers still
remains one of the greatest challenges to the study of dolphin
communication signals today” [1, 13].
feature palette Humanly obvious acoustic features such as fre-
quency and amplitude spectrograms become more complex as
the interplay between the two communicative mechanisms of
whistles and clicks are taken into account. Prosodic features
such as pitch, quantity, stress or overlay between whistles and
click bursts can be expected to communicatively relevant as well.
The features of interest to identify segments from a continu-
ous signal are manifold and involve temporal analysis of pauses
and bursts, observable changes in dynamics or amplitude of fre-
quency and harmonics, or observation of other contiguous action
on the part of the vocaliser and potentially of its peers. Previous
studies, have e.g. used a categorisation of context into play, for-
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aging, aggression, and mother–calf interaction.
segmentation and phonetic similarity Most discovery algo-
rithms in previous work on analysis of dolphin vocalisation have
used distance-based approaches to segment signals into com-
municative tokens by firstly manual inspection of a transposed
acoustic signal or a graphical rendition of its contours and later
by computationally more convenient elastic matching of the
same explicit surface signal.
directionality Directionality of sounds, especially the click
sounds, is used by dolphins when they address social signals to
specific conspecifics. [4] Directionality is difficult to establish,
and cannot be captured at all using fixed hydrophones: it will
require acoustic recordings devices that can be attached to the
animals; this is not to be included in this study.
distributional similarity Once a signal has been segmented
into communicative tokens and a cross-situational and cross-
individual similarity measure has been defined, a distributional
analysis will allow for models of similarity between tokens: ”to-
ken A is used much like token B. This is the key to creating a
thesaurus of communicative tokens, and the main challenge of
our project.
situational factors Distributional semantic models are normally
constrained to the analysis of occurrences and cooccurrences of
linguistic items, but there is no conceptual need to limit the anal-
ysis to words or constructions: other contextual factors are quite
reasonable candidates for inclusion in the computation. In this
proposed project, factors such as the presence of stimuli of inter-
est (e.g. food, play, humans, peers, threats) might well be used
as distributional features. Enriching the model to handle context
is a theoretical challenge for any distributional model.
signal and grounding Our basic assumptions are that dolphins
emit and perceive sequences of fundamental items in their com-
municative patterns, that some of the vocalisation is intended
for communication between individuals, and that dolphins are
able to individuate the sounds they make to each other. Our as-
sumption is that the communicative signal is largely sequential.
This may be a risky assumption in view of the two communica-
tive mechanisms and their interaction. Our somewhat daring as-
sumption is also that there are segmentable communicative to-
kens in the signal and that those tokens are composed by combi-
nations of separable features, much as phonemes are combined
into syllables and words.
meaning Going to the heart of the entire effort, the ques-
tion is what dolphins communicate about. While it is likely
that some referential expressions can have shareable semantics
across species, it is possible or even likely that much of dolphin–
dolphin communication concerns states and aspects of dolphin
life which are difficult to observe and may be near impossible for
humans to conceptualise. Variation in the communicative sig-
nal may encode such content, similarly to how prosodic features
are used in human–human communication. Our model will start
from concrete events, observable by dolphins and humans alike,
there is a risk of missing such salient variation from the sig-
nal that might refer to abstractions only accessible to dolphins.
Studying the communicative behaviour of another species ranges
between two theoretical extremes: On the one hand we can have
a overly broad notion of what constitutes a language everything
is language. We will then interpret every observed behavioural
pattern of the studied species as a negotiation or dialog between
the individual and its surroundings, including other individuals.
On the other hand, if we hold to the narrowest notion of language
Only human-like communication behaviour is language then we
run the risk of finding nothing or only finding crude versions of
human language. As an example, should the cheetah agonistic
sound sequence moaning-growling-hissing-spitting, with ”paw-
hit” [14] be interpreted as four distinct signals, signalling four
distinct and identifiable mental states, or simply as four different
”modes” of one and the same escalating mental state?

Addressing these challenges must be iterated over in turn,
since the results from one will inform the processing models
in both preceding and subsequent ones. After signal segmen-
tation, we will study both similarities between those tokens as
well as differences between specific individuals’ uses of those
tokens. The results of these studies may well force us to revisit
the way we segmented the signal. It is therefore important that
we capture the signals in their entire frequency spectrum with a
minimum of pre-study notions as to what the relevant range of
frequencies are: if the dolphins can hear it, we intend to capture
it.

6. Current state of the prestudy
We are currently recording dolphins at Kolmården with a fixed
hydrophone set-up, and expect to start processing the data during
this year. Results will be released both as data sets and as meth-
ods and algorithms for further application in other projects. Sev-
eral of the results we expect are potentially extensible to other
species as well; some of the results are contributions not only to
our understanding of dolphins but to our general understanding
of the capacity and limits of distributional modelling.
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Abstract 

There are many mysteries related to the speech development 

process of a baby; the influence that the constraint imposed by 

the structure of the vocal organ such as the larynx / throat has 

on the speech development has not been elucidated. Therefore, 

we have developed a speech robot, specifically, the Lingua 

series, which has an infant's articulatory ability and can produce 

voices similar to infants [1, 2]. The purpose of development of 

Lingua is to develop a vocal robot platform that can be utilized 

in behavioral studies regarding the experiments of infant-

caregiver interactions as a substitute for a real infant (Figure 1). 

In this article, we focus on an utterance platform that can 

precisely reproduce various utterances of real infants. 

Index Terms: Lingua-R, pitch, babbling, shout, arytenoid 

cartilage 

1. Lingua-R: a vocal robot platform 

The Lingua can reproduce a pitch of 410–2000 Hz when the 

vocal cords are deformed manually [3]. However,  several 

issues remain unsolved.  The vocal cord folds could not satisfy 

the lower pitch of the babbling (300–400 Hz), the drive 

mechanism is not implemented, and the pitch control program 

is not coded. In this study, we propose the following (Lingua-

R): 

(i) a new vocal cord which satisfies the pitch range of the 

babbling/shout at the same time (300–1000 [Hz]) 

(ii) a drive mechanism to control the pitch 

(iii) a pitch control code with auditory feedback 

2. New vocal cords 

First, regarding the vocal cord folds, the optimum values of 

shape parameters were determined in terms of five parameters 

related to the thickness and hardness of the fold [3] (Figures 2, 

3). In this version, we improved the performance by adding two 

more parameters (angle of the fold and vertical thickness of the 

surface layer) in an attempt to keep the minimum and maximum 

pitch as low and high, respectively, as possible. As a result, the 

lowest pitch decreased from the conventional 410 Hz to 325 Hz, 

but at the same time, the maximum pitch dropped from 2000 

Hz to 1028 Hz. However, these values cover 96 % of the pitch 

range of 300 (babbling)–1000 Hz (shout). Although it does not 

seem perfect, it seems to achieve the initial purpose. 

 

 

Figure 1: Overview of Lingua-R. 

3. Arytenoid cartilage mechanism 

To control the pitch of the voice, we implemented an arytenoid 

cartilage mechanism. The mechanism has two degrees-of-

freedom (DOFs): open/close and stretch/relaxation of the vocal 

folds (Figure 4). Each DOF is driven by a DC motor. A motor 

driver controls the motor speed and an encoder measures the 

motor angle displacement. A Windows PC with I/O board 

controls the motor angle. The period of the position control of 

the motor is 2 ms. The control PC also controls the airflow into 

the vocal cords with the mechanism of the lungs. This system 

configuration enables simultaneous control between the 

vibration of the vocal cords by the airflow and stretching of the 

fold. Consequently, Lingua-R can produce voice and control its 

pitch.  
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4. Pitch control program 

We also developed a pitch control program with auditory 

feedback. A PC measures Lingua-R's voice by a microphone, 

calculates the pitch, and sends the pitch value to the control PC. 

The control program changes the two-dimensional position of 

the distal end of the arytenoid cartilage mechanism according 

to a preliminarily calibrated pitch-position mapping. If there is 

an error between the desired and measured pitch, the program 

fine-tunes the position according to the gradient of the mapping. 

5. Experiments and conclusion 

As a result of the speech experiment, it was confirmed that the 

robot exhibited sufficient responsiveness, pitch followability, 

and stability to reproduce an infant's utterance (Figure 5). 

Although the pitch performance was numerically approved, the 

shout voice did not appear as realistic. Further improvement is 

required in addition to better coding for pitch control. 
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Figure 2: Two-layered vocal cords for Lingua. 
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Figure 3: Fabrication process of the vocal cords. 

 

Figure 4: Arytenoid cartilage mechanism. 

 

Figure 5: Pitch performance in terms of two (x,y) 
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Abstract
The current paper focuses on the various types of laugh-

ter recorded during real social interactions in a virtual immer-
sive environment. In this experiment, we investigate whether
human beings are able to discriminate perceptually determined
volitional social laughs from spontaneous involuntary laughs
using only audio information without any contextual cues. To-
wards this aim, we designed a perceptual experiment taken by
82 French and 20 Japanese subjects. Each subject listened to
162 laughs and chose one response among three possibilities :
social, spontaneous or unknown (I don’t know). The results
show that all listeners are able to discriminate these two types
of laughter with quite good confidence without contextual infor-
mation : the correct identification rate for spontaneous laughter
is about 70% with a similar amount for social laughter. We then
extracted acoustic characteristics for each laughter in order to
investigate possible differences between the two types of laugh-
ter. Moreover, multiple factor analysis shows that perceptual be-
haviours and some acoustic features (F0 and duration) are cor-
related. Especially, we observe a significant difference between
social and spontaneous laughter through the features of F0 and
total duration.
Index Terms : human laughter, recognition, acoustics, percep-
tion, culture

1. Introduction
Comprehensive knowledge about the vocal characteristics

of social affective interaction has been neglected for a long time
because of the lack of sufficient understanding about cognitive
processing of various affective meanings as well as technical
realization of such expressions. However, automatic recogni-
tion and synthetic realization of such affective meaning became
one of the important issues for researchers of various scienti-
fic research fields like social robotics, medical hearing tools or
language learning tools etc. [1, 2].

Such human social interaction is an exchange of social in-
formation conveyed by voice, eye contact, gestures, facial ex-
pressions, sighs or laughter [2, 3, 4]. Among these modalities,
laughter must be one of the most important behaviours in the
development of speech and in human and animal communica-
tion [5, 6, 7]. Laughter is often considered as a physical reac-
tion to external stimuli which are often linked to positive va-
lence (i.e. joyful reaction). Although laughter is deeply rooted
in human biology, it also serves very strong social roles to bring
about positive, mutually beneficial relationships among people

and communities [8, 9]. In [10], the authors reported that laugh-
ter is usually provoked by external stimuli, and organized on
three different axes : neuro-hormonal involving periaqueductal
gray, the reticular formation with inputs from cortex basal gan-
glia and the hypothalamus [11], including muscular inputs and
the respiratory axis.

In [9], the authors suggest the existence of two different
types of laughter : spontaneous and volitional (or social) by
neuro-physiological differences. Spontaneous laughter is consi-
dered an involuntary reaction to external stimuli. It is supposed
to be innate because it occurs even before the first words. Phy-
siological changes during such involuntary laughter are quite
different from what occurs during a voluntary one. For instance,
involuntary laughter is characterized by a higher activation of
hypothalamus than for the voluntary one, and the chest expan-
sion and amplitude of sound waves show more regular cycle
patterns than the voluntary one which exhibits a speech-like
pattern. On the other hand, social laughter is supposed to be
an intentional communicative act in order to set up a positive
relationship or to tone down the conflictive tension.

Concerning the acoustic realization of these various types
of laughter, [12] suggests three levels of description : ”bouts”,
”calls” and ”segments”. With regard to segmentation, [13] made
a distinction between ”spontaneous” and ”social” laughter. Ac-
cording to recent work ([14], [12], [15], [16]), the spontaneous
is higher and has a more variable F0, as well as higher varia-
bility in acoustic parameters in general. In addition, the spon-
taneous laughter is also characterized by longer duration with
a shorter burst duration, ingressive and chuckle sounds ([13],
[17]). However, there is no significant difference for both types
of laughter regarding the breathiness and the mouth aperture.
According to our assumption, (1) human beings are able to dis-
criminate between social (voluntary) laughs and spontaneous
(involuntary) ones using only audio information without any
context. (2) Perceptually determined spontaneous laughter may
have common acoustic cues among different cultures. On the
contrary, (3) volitional social laughter may be perceived diffe-
rently from one culture to another following cultural conventio-
nal manners.

Following these hypotheses, the current research investi-
gates (1) whether French and Japanese subjects can discriminate
between social volitional laughter and spontaneous involuntary
laughter using only auditory laughs extracted from an immer-
sive virtual interaction without any context. Independently we
aim at investigating (2) acoustic characteristics for each type of
laughter in French and Japanese.
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2. Corpus
The stimuli were recorded in an immersive virtual envi-

ronment at Kyoto University, Japan. This database consists of
spontaneous affective speech recorded during a virtual reality
game played by three participants. The game was designed to
study communications between people in virtual environments
and was made using Unity. Each player was alone in his own in-
dividual immersive virtual environment (completely surrounded
by displays or in an immersive dome), but could communicate
with the others using cameras and microphones. They were re-
quired to communicate in order to solve various tasks instructed
by three different virtual characters. One of the main interests
of this approach is that each participant can be recorded indivi-
dually. A total of 12 spontaneous affective speech data files 9
Japanese (2F/7M) and 3 French (1F/2M) were recorded. A total
of 254 sequences containing only laughter were manually seg-
mented using PRAAT [18]. A first pilot test was conducted in
order to investigate what acoustic features distinguish sponta-
neous emotional vocalizations of laughs from volitional forms
which are considered as social laughs ([17], [14], [19]). 7 ex-
perimenters (3 Japanese males and 4 French (3F/1M) are ins-
tructed to annotate each sample using two labels spontaneous
and social. According to a selection threshold criterion based
on more than 70% of identification of the stimulus perceived
as ”spontaneous”, a set of 27 spontaneous laughs was chosen.
Another pilot test designed to choose the 27 volitional social
laughs was done under the same criterion as for the spontaneous
one by the 4 French experimenters who participated in the first
pilot test.

3. Perceptual experiment
3.1. Paradigm

82 French native listeners (48F/34M, Mean age = 22.39
years) and 20 Japanese native listeners (9F/11M, Mean age =
24.55 years) were recruited in both countries. The stimuli were
displayed 3 times each in audio alone condition in a randomized
order (54 laughs (27 spontaneous / 27 social) x3 (repetitions) =
162 stimuli).

Before the test, subjects were informed about the definition
of each type of laughter and the procedure of the experiment.
The test was conducted individually using a GUI based inter-
face developed under the ”OpenSesame” software [20]. The to-
tal duration of the session took about 25 minutes. The subjects
were required to listen to each stimulus at least once but could
listen to the stimulus a second time maximum. Then, they had
to select one choice among three possible answers : ”sponta-
neous”, ”social”, ”I dont know”. In the cases when spontaneous
or social were selected, the subjects had to select a degree of
certainty on a scale from 1 (not sure) to 7 (very sure). Defini-
tions of the type of laughter provided in the instruction were :

— Spontaneous : it seems to you that the person is lau-
ghing in a spontaneous manner to an external event (e.g.
a funny clip)

— Social : it seems to you that the person is laughing to
maintain the communication with the other (e.g. em-
barrassed laughter, polite laughter, cynical laughter...)

3.2. Results

First of all, the χ2 test was computed to investigate whether
the distributions of listeners responses (Social, Spontaneous or
Unknown) are independent or correlated. According to the re-

sult, a significant difference of the distribution of answers was
observed (χ2= 5284.7, ddl :2, p < 0.001). According to the
Table 1 (stimuli are in rows and the responses given by the
subjects are in columns), the two types of laughter are well re-
cognized : French subjects identified 69.24% for spontaneous
laughs and 69.41% for social laughs ; Japanese listeners reco-
gnised 70.49% for spontaneous laughs and 74.63% for social
laughs. These results confirmed that the listeners of both groups
were able to recognize 2 types of laughter without visual indices
or context.

TABLE 1: Results for the perceptual test for French and Japa-
nese listeners. Raw results are presented with their frequency
for each row

FRENCH Spontaneous Social Unknown
Spontaneous 4599 (69.24%) 1683 (25.34%) 360 (5.42%)
Social 909 (13.69%) 4444 (69.41%) 1289 (19.41%)
Total result 5508 (41.46%) 6127 (46.12%) 1649 (12.41%)
JAPANESE Spontaneous Social Unknown
Spontaneous 1142 (70.49%) 289 (17.84%) 189 (11.67%)
Social 370 (22.84%) 1209 (74.63%) 41 (2.53%)
Total result 1512 (46.67%) 1498 (46.23%) 230 (7.10%)

3.3. Correspondence analysis

In order to observe the perceptual distance of all responses
based on the classification made by the listeners (spontaneous,
social, I don’t know) for 54 stimuli, we computed a Correspon-
dence Analysis (CA) using FactoMineR package ([21]) under
R software. According to the CA, the perceptual behaviour for
26 stimuli in the French group and 22 stimuli in the Japanese
one, listeners showed an important contribution (i.e. above the
expected average contribution for both 1st and 2nd dimensions).

Figure 1 and Figure 2 describe the distribution of 26 per-
ceptual points for French and 22 for Japanese subjects on two
psychometrical dimensions. The blue points on the figures re-
present the distribution of the perceptual behaviour and the three
triangles represent the concept subjects have of the three ans-
wers. These two figures indicate that both French and Japanese
listeners discriminate clearly the two types of laughter. It is also
important to note that social and unknown categories are close
together on the 1st dimension and far from spontaneous, which
represents a well discriminated category. It indicates that vo-
litional social laughs are more difficult to perceive than spon-
taneous ones. French subjects felt more difficulty to identify 5
laughs (located in the category of ”unknown”) rather than Japa-
nese who had only two laughs in this category).
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FIGURE 1: Distribution of the perceptual behaviour of the
French listeners for 26 stimuli
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FIGURE 2: Distribution of the perceptual behaviour of the Ja-
panese listeners for 22 stimuli

4. Acoustic analysis
For the purpose of the acoustic analysis, we measured se-

veral acoustic features that were previously reported to predict
affective ratings and categorization for laughter as well as for
more general affective voice analysis [17].

4.1. Features extraction

For the acoustic analysis, fundamental frequency (F0) and
intensity are computed every 10 ms. They were extracted using
a customized version of the Snack toolkit [22]. Most analyses
are carried out on the voiced parts of the laughter as detected by
the F0 extraction algorithm, thus ignoring non-voiced segments.

We extracted a set of 14 features in four main categories :
F0 values for assessing the variability of the fundamental fre-
quency (we expect, for instance, to have higher frequencies
as well as more variability for spontaneous laughs), Intensity
values - where higher levels and variability are also expected
for spontaneous laughs, Duration values - social laughs are ex-
pected to be shorter and less voiced, Harmonics-to-noise ratios
which were not explored in previous laughter studies but are
expected to measure to some extent the breathiness level.

— F0mean (Hz) : the mean value of F0 extracted on voiced
parts of the laughs

— F0SD : the standard deviation of F0 values on a laughter
excerpt (voiced parts)

— F0slope (Hz/s) : the approximated slope of F0 (voiced
parts only)

— NRJmean (dB) : mean of intensity values (whole file)
— NRJsd (dB) : standard deviation of intensity values du-

ring a laughter
— NRJslope (dB/s) : approximated slope of intensity du-

ring a laughter
— total.duration : duration of a manually annotated laugh-

ter
— voiced.duration : duration of all the voiced parts of a

laughter
— NBvoiced : number of voiced segments
— HNR05 : harmonic to noise ratio in the frequency band

between 0 and 0.5 kHz
— HNR15 : harmonic to noise ratio in the frequency band

between 0 and 1.5 kHz
— HNR25 : harmonic to noise ratio in the frequency band

between 0 and 2.5 kHz
— HNR35 : harmonic to noise ratio in the frequency band

between 0 and 3.5 kHz
An example of basic features extracted on a spontaneous

laughter from our corpora is displayed on Figure 3.

FIGURE 3: Extraction of acoustic features on a spontaneous
laughter excerpt

4.2. Multiple Factor Analysis

To explore the global correlation between the acoustic fea-
tures of F0 (mean, slope, standard deviation), intensity (mean,
slope, standard deviation), total duration and voiced segment
duration and the perceptual values (responses provided by the
subjects) of both French and Japanese groups (abbreviated as
Res FR and Res JP), a Multiple Factor Analysis (MFA) was
carried out. Before computing the MFA, all acoustic and per-
ceptual values were converted into z-scores setting average
value as reference value for each parameter. The result sho-
wed that the distribution of the responses of French as well as
for Japanese listeners were correlated with F0 features (mean
and standard deviation) and the total duration of the laughter
segments and of the voiced segments. However, the intensity
(mean, slope, standard deviation) and F0 slope were less cor-
related with the perceptual responses of the two groups (Fi-
gure 4). Table 2 shows the values for F0 mean, F0 sd, mean
duration and voiced segment mean duration. Significant diffe-
rences were found between spontaneous and social laughter for
F0 sd (t(52)=5.669, p.=0.05), for duration mean (t(52)=2.696,
p.=0.05) and the voiced segment duration mean (t(52)=2.595,
p.=0.05) between spontaneous and social volitional laughs. The
variations of F0 values are higher, total duration and voiced seg-
ment duration is longer for spontaneous laughs than for social
ones.
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FIGURE 4: Correlation between acoustic and perceptual values
described by Multiple Factor Analysis

Proc. 1st Intl. Workshop on Vocal Interactivity in-and-between Humans, Animals and Robots (VIHAR), Skvöde, Sweden, 25-26 Aug 2017

39



TABLE 2: Mean F0, F0 SD, total duration mean and voiced
duration mean for the spontaneous and the social laughs

Spontaneous Social t-test
F0 mean (Hz) 203.59 160.80 ns

F0 SD 54.75 25.69 2.696*
Total duration mean (s) 1.81 0,65 5.669**

Voiced duration mean (s) 0.25 0.13 2.595*
*p<.05 **p<.01

4.3. Principal Component Analysis

Previous MFA analysis showed only the global correlation
between all responses and all acoustic parameters. Therefore, a
Principal Component Analysis (PCA) was applied to all acous-
tic parameters by the two types of stimuli that were categorized
by all of the listeners (French and Japanese groups). We first
analysed all types of laughs for the intensity (mean, slope, stan-
dard deviation) and total duration. Ellipses indicate a normal
probability (=68%) for each group of laughter. Correlations are
found between the intensity standard deviation and the intensity
mean vectors. The direction of the vector corresponding to the
total duration on the component 2 (vertical axis) reveals that
these acoustic features help differentiate spontaneous laughs
from the social ones (Figure 5).

A second PCA was applied on the voiced laughs only (6
completely unvoiced laughs were removed from the set) in or-
der to add the acoustic features related to voicing to the ana-
lysis : F0 mean, F0 slope, F0 standard deviation, voicing dura-
tion, number of voiced segments. The result (Figure 6) shows
that the voiced duration and the number of voiced segments are
correlated. F0 standard deviation and total duration are closely
correlated. Then, F0 mean and intensity slope are correlated as
well. According to the distribution of the type of laughs related
to the direction of each vector on the component 1, it was found
that the acoustic features concerning the voiced segment dura-
tion, the number of voiced segments, the total duration and the
F0 standard deviation help differentiate spontaneous and social
laughs.

Figure 7 represents the variations in duration of each laugh-
ter (normalised values). Spontaneous laughs show greater varia-
bility than social laughs.
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5. Conclusion
The current paper investigates whether human beings can

perceptually discriminate between social volitional laughter and
spontaneous involuntary laughter from a corpus of spontaneous
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FIGURE 7: Total duration of the two types of laughs

laughs recorded in a virtual immersive environment using only
sound information without any context or any foreign language
skill. According to the perceptual discrimination experiment
with native French and Japanese subjects, participants are able
to discriminate these two types of laughter indicated by more
than twice the chance level of recognition rate without context.
This result confirms the existence of two types of laughter on the
voluntary-involuntary control dimension as mentioned in pre-
vious research [9, 17].

Fourteen acoustic features including F0, harmonic to noise
ratio, intensity and duration for each type of laughter are also
investigated. Multiple factor Analysis was conducted to explore
the global correlation between the acoustic characteristics and
the participants’ perceptual behaviour. Results showed that the
perceptual behaviours of both French and Japanese groups were
correlated with F0 features (mean and standard deviation), the
total duration and the voiced segment duration. After this glo-
bal result, we further investigated the important acoustic factors
associated to each type of laughter (spontaneous or social). The
results showed that the total duration helps to differentiate spon-
taneous laughs from the social ones. Moreover, we found that
the voiced duration, the number of voiced segments and the F0
standard deviation also contribute to the differentiation between
spontaneous and social laughs.

For future work, we will implement an additional percep-
tual experiment with social laughs to explore sub-categories of
social laughter (embarrassment, politeness or mirthful) among
two different cultures/languages (i.e. Japanese and French).
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Abstract
Since the early days of cinema and television, fictional charac-
ters such as ‘robots’ and ‘aliens’ have almost always been por-
trayed with correspondingly robotic or alien voices. Likewise,
animated cartoon characters are often given quirky or unusual
vocal characteristics. A wide variety of different techniques are
used to create these imaginary voices, and the precise proper-
ties of each are usually carefully selected to fit the narrative
context. In marked contrast, the voices of speech-enabled arte-
facts in the non-fictional world (such as Apple’s Siri or Amazon
Echo’s Alexa) invariably sound humanlike, despite the risk that
users might be misled about the capabilities of the underlying
technology. The research reported here attempts to bridge the
gap by collating and analysing a large corpus of robot, alien
and cartoon voices with a view to understanding the relation-
ship between particular vocal characteristics and the perceived
‘persona’ of the different characters portrayed. The results show
that voice quality, delay/echo/reverberation and voice breaks are
major factors, and it is concluded that a more in-depth under-
standing could lead to guidelines and tools that would allow de-
signers of speech synthesis systems to create more appropriate
voices in line with the ‘affordances’ of the target persona.
Index Terms: robot voice, alien voice, cartoon voice, vocal
affordances, speech synthesis

1. Introduction
Since the early days of cinema and television, fictional char-
acters such as ‘robots’ and ‘aliens’ have almost always been
portrayed with correspondingly robotic or alien voices. Perhaps
one of the most famous examples (certainly in the UK) is the
harsh metallic (and terrifying) voice of the ‘Daleks’ - a race
of hostile alien machine-like organisms which appeared in the
BBC television science-fiction series Doctor Who in 1963. The
Dalek’s voice was produced using a technique known as ‘ring
modulation’, and the catchphrase “Exterminate!” in a suitably
monotonic tone has subsequently become an icon of evil.

In a similar manner, animated characters are often given
quirky or unusual voices. For example, cartoon series made by
Warner Brothers such as Looney Tunes and Merrie Melodies
featured the popular character ‘Daffy Duck’ - an anthropomor-
phic black duck who spoke with a heavily exaggerated (and
much imitated) lisp. Daffy was given this particular speech
impediment specifically in order to reflect the possible conse-
quences of a duck having an extended mandible.

A wide variety of different approaches are used to create
these imaginary voices, from skilled voice actors to technology-
based vocal manipulation. In each case, the aim is to select
the vocal characteristics that fit the narrative context. In other
words, such voices are specifically tailored to be appropriate
to the character being portrayed, and this is regarded as a part-
objective part-subjective highly-skilled activity.

“I usually first think, if these objects, places, robots
or machines really existed what would they sound
like? How would they be powered? What would be
the actual physics of how they work? But if I find a
sound isn’t working within a scene, I’ll abandon the
science and go with what works emotionally.”

Ben Burtt [1]
(sound designer for R2-D2, ET and Wall-E)

In marked contrast, the voices of speech-enabled artefacts
in the non-fictional world (such as Apple’s Siri or Amazon
Echo’s Alexa) are invariably designed to be as humanlike as
possible using the latest technology for ‘text-to-speech’ synthe-
sis [2]. For such devices, it is taken for granted that users pre-
fer ‘natural’ voices over artificial or robotic voices. However,
a human-sounding voice encourages users to overestimate the
capabilities of the underlying technology, with negative conse-
quences for subsequent interaction [3, 4, 5]. Nevertheless, con-
sumer resistance and the lack of a suitable design methodology
mitigate against the deployment of non-humanlike voices.

Based on research carried out by the first author as part of
her MSc Dissertation [6], this paper attempts to bridge this gap
by collating and analysing a large corpus of robot, alien and car-
toon voices. The aim has been to gain some understanding of
the relationship between particular vocal characteristics and the
perceived ‘persona’ of the different characters portrayed [7]. It
was hoped that this information could be used to better inform
the design of future artificial voices in line with the principles
espoused in [8]: “It’s better to be a good machine than a bad
person”. Not only could this lead to the design of more appro-
priate voices for speech-enabled artefacts, but could also avoid
entering the ‘uncanny valley’ [9] in which mismatched percep-
tual cues give rise to confusion and feelings of repulsion [10].

The paper is structured as follows: Section 2 reviews the
ways in which voices may be manipulated, Section 3 describes
the corpus of collected vocal samples, Section 4 presents an
analysis of the data, and Section 5 summarises the results and
concludes with suggestions for further work.

2. Robot, Alien and Cartoon Voices
The voices that were of interest in this study were not strictly
limited to robots, aliens and cartoon characters; we were also
concerned with talking machines, talking animals and indeed
any real or imaginary artefact that might vocalise. In practice,
there are three possible approaches to creating a desired vocal
characterisation: (i) employ a skilled voice actor to adopt an un-
usual range, skill or voice quality, (ii) use a suitably configured
speech synthesiser, or (iii) modify a voice in post-production
by analogue manipulation or by digital signal processing [11].
The latter may be applied to natural or synthetic speech, hence
it was of special interest to the study reported here.
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2.1. Vocal Manipulation Techniques

There are many ways in which a voice (real or synthetic) may
be manipulated in order to change some aspect of its charac-
teristics, and several commercial products are available - par-
ticularly for use in professional music recording studios. One
of the earliest devices was Sonovox (invented in 1939) which
fed a sound source into a performer’s throat so that they could
use their tongue to shape the emitted sound. This arrange-
ment enabled artefacts and musical instruments to articulate,
and Sonovox was famously used in 1947 to make a piano talk in
Sparky’s Magic Piano. A more modern example is Auto-Tune
[12] which was used by Cher in 1998 to create a unique pitch-
jumping effect in her song “Believe”. Auto-Tune was also used
to create the voice of ‘GLaDOS’ (in Portal 2) and ‘Brian’ (for
Confused.Com). In addition, there are many ‘voice-changers’
available on the internet: e.g., Voxal [13].

Techniques for vocal manipulation operate in either the
time-domain or the frequency-domain [11]. Not only are these
non-exclusive, but multiple techniques may be applied in any
order. As a result, the number of potential effects is huge. Ex-
amples of specific manipulations are listed in Table 1.

Table 1: Examples of vocal manipulation techniques (roughly
in order of increasing complexity).

Technique Method
Time reversal delay line
Speed change delay line
Tremolo modulated amplitude
Vibrato modulated pitch
Ring modulation multiplication of two signals
Comb filter short delayed version added to the original
Echo long delayed version added to the original
Flanger delay-modulated version added to the original
Chorus multiple flangers with different delays
Phaser phase-modulated version added to the original
Reverberation convolution with room acoustic
Pitch shift homomorphic filtering
Harmony pitch-shifted version added to the original
Filtering frequency shaping
Formant shift altered vocal tract length
Vocoding linear prediction analysis-synthesis

Many manipulations involve a ‘low frequency oscillator’
(LFO) that gives a time-varying character to the modified out-
put. For example, vibrato and tremolo are achieved using
an LFO to control amplitude or frequency respectively, and a
“wah-wah” effect can be created by using an LFO to control the
characteristics of a low-pass filter.

The consequence of each of these manipulations is to al-
ter the tone and timbre of a voice in various ways. Of course,
the initial voice could be natural or synthetic and could already
be imbued with a particular characterisation. For example, the
voice actors for the ‘Daleks’ (from Doctor Who) speak in a
stilted monotone prior to their voice being subjected to modi-
fication by ring modulation using a 30Hz LFO.

2.2. Example Voices

In general, there are some fairly standardised ways that have
been found to produce acceptable imaginary voices. For exam-
ple, an effective robot voice can be achieved by a small increase
in pitch, followed by adding back the original (c.f. ‘harmony’)
and introducing some echo. On the other hand, a reasonable
alien sound may be created by decreasing the pitch and applying

a chorus effect. Finally, a cartoon-like voice may be produced
by applying a large pitch increase followed by a chorus effect
and added tremolo. These, and many others, are often avail-
able as ‘presets’ in voice-changing products such as Voxal [13].
Specific examples of characters with voices created through the
application of the techniques mentioned in Section 2.1 are listed
in Table 2.

Table 2: A selection of characters with manipulated voices.

Character Production Technique
Aliens Toy Story chorus
Celestria Power Rangers phaser
Dalek Doctor Who ring modulation
Jinx Spacecamp pitch increase
King Laufey Thor pitch decrease
Klutzy Robot Holocaust comb filter
Marvin Hitchhikers Guide vibrato
Max Flight of the Navigator reverberation
Mechanoids Doctor Who tremolo
Proteus Demon Seed flanger
Tassadar Starcraft reverse reverb.
Ultron Ultimate Alliance echo

3. The ‘RAC’ Corpus
A corpus of relevant voices was collected by searching the inter-
net for films and TV series with robot, alien and cartoon charac-
ters, online reviews, forums and YouTube’s recommender side
bar. Further suggestions were obtained by uploading a publicly
editable document and providing anonymous social media users
an opportunity to contribute suggestions. Voices were not lim-
ited to any accent, ethnicity or age range, nor were they required
to be speaking a known human language. However, it was de-
cided that there must be some human element to each voice, so
voices made from animal sounds or beeps and whistles (such as
‘Chewbacca’ or ‘R2-D2’ from Star Wars) were excluded.

All characters were labelled as being either ‘robot’ or
‘alien’, as well as given an estimate of their size, gender, ma-
terial (metal or organic) and good, evil or neutral ‘persona’.
Voices were also labelled with subjective impressions of delay,
harmony, modulation or speed change, as well as objective vo-
cal measurements such as pitch (mean and standard deviation),
jitter, shimmer, harmonic-to-noise ratio (HNR) and number of
voice breaks. The latter were computed using Praat, a standard
open-source speech analysis tool [14]. Vocal features such as
breathy, creaky or whispery voice quality were also labelled.

Cartoon voices were assigned as ‘robots’ or ‘aliens’ on the
basis that the latter category includes anything that does not ex-
ist in the real world. So a talking chipmunk is an alien in the
same way that a ‘Dalek’ (from Doctor Who) is an alien because,
although chipmunks exist, they do not speak. So, for example,
the cartoon character ‘Stitch’ (from Lilo and Stitch) was classed
as an alien, whereas the ‘Iron Giant’ (from a cartoon series of
the same name) was classed as a robot. In addition, the robot
category was more specific; not only could it include charac-
ters that were made of metal, but it could also be subdivided
into ‘cyborgs’ (human-robot combinations), computers (such
as ‘HAL 9000’ from 2001: A Space Odyssey) and automobile
robots (such as ‘Optimus Prime’ from Transformers, ‘KITT’
(from Knight Rider and ‘Crimebuster’ from Heart Beeps).

In total, 93 voices were collected and annotated, with sam-
ples spanning a period from 1939 (The Wizard of Oz) to 2015
(Chappie) - see Table 3. We are not permitted to share the data.
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Table 3: List of the 93 robot, alien and cartoon voices in the ‘RAC’ corpus.

AlvinChipmunk BigHero-Baymax BicentMan-Galatea BSG-Cylon CaptainScarlet-mysterons
Chappie Confused.com-Brian Cyborgcop DarkStar-Bomb20 DemonSeed-Proteus
DrWho-Icewar DrWho-Cybermen DrWho-Dalek DrWho-Davros DrWho-GreatIntelligence
DrWho-K9 DrWho-Mechaniod DrWho-Silence DrWho-Silence2 Dumbo-Casey
ET Evolver FlightoftheNav-Max ForbiddenPlanet-Robby GhostITShell-Proj2501
GIJ-CobraCommander GOTG-Groot GuyverDarkHero-Guyver HarryPotter-Dobby Heartbeeps-Crimecar
Heartbeeps-Val HGTTG-Penguin HGTTG-Vogon HGTTG-Marvin Hulk-Abomination
InspGadget-DrClaw Intersteller-TARS1 Intersteller-TARS2 IronGiant-Giant IronMan-Jarvis
JudgeDredd-ABCWar KnightRider-Kitt Lilo&Stitch-Stitch LostInSpace-B9 LOTR-Gollum
LOTR-MouthSauron LOTR-Treebeard Marv-AlutAlianc-Ultron Marv-SHSquad-Ultron MenInBlack2-Zarthan
MichWeb-Cheesoid Moon-Gerty Portal2-GlaDos PowerRangers-Alpha PowerRang-Cestria
PowerRangers-Goldar PowerRangers-Zordon QuantumQuest-Fear ReturnToOz-Ticktok Robocop
RobotHolocaust-Klutzy Rocky-Sico ShortCircuit-Johnny5 SmashRobots Spacecamp-Jinx
SpaceOdyssey-HAL SparkyPiano Starcraft-Tassadar StarTrek-Borg StarWars-C3PO
StarWars-DarthVador StarWars-EmperorP StarWars-EV-9D9 StarWars-JabbaTheHutt StarWars-JarJarBinks
StarWars-Yoda TheBlackCauldron-HornedKing Tekken-Yoshi TheBlackHole-Vincent TheHobit-Smaug
Thor-KingLaufey TMNT-Shredder ToyStory-Aliens Transformers-Deceptacon Transformers-OptimusPrime2
Transformers-OptimusPrime-low Tron1982-MCP TronLegacy-Gem Walle-Eve Walle-Auto
Walle-Walle WhatHappenedToRJ-RobotJones WizardOfOz-Witch

4. Data Analysis
4.1. General Observations

Of the 93 voices in the ‘RAC’ corpus, 50 were classed as ‘robot’
and 43 were classed as ‘alien’. 64 were single recordings, 29
were concatenated samples and a large number (81) had au-
dible background noise. Interestingly, 87 were categorised as
‘male’, but only 6 as ‘female’. The most common effect in
the corpus was echo or delay (66), followed by harmony (45),
some form of modulation (40), slowing down (15) and speeding
up (4). One of the more interesting effects was reverse rever-
beration in a character called ‘Tassadar’ (from Starcraft) which
created an unusual inhalation sound prior to the speech. Pitch-
changing effects were also found, such as quantised pitch shifts
in ‘Brian’ (from Confused.Com) and a monotone in the ‘Cylons’
(from Battlestar Galactica). In terms of phonetic voice quality,
8 voices were creaky, 6 were whispery, 6 hoarse, 3 breathy and
3 tense/glottal.

In order to determine the relationship between the character
voices in the ‘RAC’ corpus and normal unaltered human voices,
89 male and 42 female voices were selected from the TIMIT
corpus [15] as ‘controls’ for comparison. The natural human
voices were subjected to the same analysis techniques as the
character voices, and various statistics were calculated across
both sets.

4.2. Summary Statistics

Correlations were computed between the various parameters
and simple ‘persona’ characteristics (such as characters vs. con-
trols, ‘robots’ vs. ‘aliens’, and ‘good’ vs. ‘evil’) - see Table 4.
As might be expected, the results indicate that character voices
differ from normal (control) voices on most of the measures,
reflecting the manipulations that have taken place (especially in
delay, voice quality and breaks). The difference between ‘robot’
voices and ‘alien’ voices not only shows up (to a modest ex-
tent) in the voice quality measures, but also in the mean pitch.
It seems that the ‘aliens’ in the corpus had somewhat higher
pitched voices than the ‘robots’ (unlike the Voxal pre-set men-
tioned in Section 2.2), but both have a much larger range than
controls - see Fig. 1.

As mentioned, Table 4 suggests that voice quality plays
a role in distinguishing the various ‘personae’. For example,
Fig. 2 shows that ‘alien’ voices have a slightly more unusual
voice quality than ‘robot’ voices, both of which are quite differ-
ent from unmanipulated control voices. Table 4 also indicates

Table 4: Correlations between measured vocal parameters and
various simple ‘personae’.

Character-Control Robot-Alien Good-Evil
Pitch (µ) -0.1470 0.2225 0.0290
Pitch (σ) -0.4732 0.1954 0.1439
Jitter -0.5535 0.1865 0.3514
Shimmer -0.6857 0.2470 0.3968
HNR 0.6646 -0.1868 -0.3568
Delay -0.6905 0.0705 0.1871
Harmony -0.5494 -0.1095 -0.0965
Breaks -0.6550 -0.1133 -0.0307

100 150 200 250 300 350

Control (F)

Control (M)

‘Alien’

‘Robot’

Mean Pitch (Hz)

Figure 1: Distribution of mean pitch for ‘robot’ and ‘alien’
character voices compared to unmanipulated male and female
control voices.

that voice quality plays a role in distinguishing the voices of
‘good’ characters from ‘evil’ characters - see Fig. 3.

It can also be seen from Table 4 that an important differ-
ence between the character voices and the controls is that the
characters often contain an unusually large number of breaks
(often caused by the use of a low frequency modulation effect).
Fig. 4 illustrates an almost complete lack of overlap between the
two groups for this parameter, with one character in particular -
the ‘Mechanoids’ (from Doctor Who) - showing up as the most
extreme example.
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Figure 2: Distribution of pitch shimmer for ‘robot’ and ‘alien’
character voices compared to unmanipulated control voices.
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Figure 3: Distribution of voice qualities (based on measured
HNR) for ‘good’ and ‘evil’ character voices compared to un-
manipulated control voices.
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Figure 4: Distribution of the number of voice breaks for char-
acter voices compared to unmanipulated control voices.

4.3. Principal Component Analysis

In addition to computing the statistical correlations between
various vocal parameters, the ‘RCA’ corpus was also analysed
using principal component analysis (PCA) [16]. It was found
that four components accounted for 67.4% of the total variance.
The first component appeared to correspond to aspects of voice
quality, serving to distinguish ‘good’ personae from ‘evil’ per-
sonae. The second component was linked to pitch which, with
more female character data, could have related to gender. The
third correlated to size, voice breaks and material, which could
be regarded as aspects of ‘appearance’. The fourth component
related to echo, delay and reverberation, which seemed to dis-
tinguish fictional from non-fictional characters.

As examples, the extreme characters for the first principal
component were ‘GLaDOS’ (from Portal 2), ‘Galatea’ (from
Bicentennial Man) and ‘Jar Jar Binks’ (from Star Wars) as the
most ‘good’ characters, and ‘The Silence’ (from Doctor Who),
‘Abomination’ (from The Incredible Hulk) and the ‘Daleks’
(from Doctor Who) as the most ‘evil’ characters. Perceptually,
the first three (the ‘goodies’) have near normal voice quality,
whereas the final three (the ‘baddies’) are heavily manipulated.
Extreme characters for the second principal component were
‘Gerty’ (from Moon) at the low-pitch end and ‘Robot Jones’
(from Whatever Happened to Robot Jones?) at the high-pitch
end.

Overall, it is interesting to note that the PCA revealed that
most of the variance in the data arises as a result of personality
rather than appearance, thereby confirming the importance of a
character’s voice as a key indicator of ‘persona’.

5. Summary and Conclusion
The research reported in this paper has attempted to bridge the
gap between voice-enabled artefacts in the fictional and non-
fictional worlds by collating a large corpus of robot, alien and
cartoon voices and comparing them with normal control voices.
The aim has been to gain some understanding of the relationship
between particular vocal characteristics and the perceived ‘per-
sona’ of the different characters portrayed. It was hoped that
this information could be used to better inform the design of fu-
ture artificial voices in line with the principle that “It’s better to
be a good machine than a bad person” [8].

The study has confirmed that the majority of robot, alien
and cartoon voices are manipulated to fit the narrative context,
and that such manipulations are correlated with different ‘per-
sonae’ in predictable ways. In particular, it has been shown
that voice quality, delay/echo/reverberation and voice breaks are
major factors that influence the perceived character. These re-
sults, coupled with existing evidence that it is possible to infer
a speaker’s physical attributes such as age, weight and height
from their voice [17], lend support to the view that future voice-
enabled artefacts should not be designed to be as humanlike as
possible, but should adopt vocal characteristics that are appro-
priate to their physical makeup and cognitive capabilities.

Ultimately, what is required is a set of guidelines (and asso-
ciated tools) that would allow the designers of voice-enabled
artefacts to ‘dial-up’ appropriate vocal characteristics in line
with the visual and behavioural affordances of the target ‘per-
sona’. In order to achieve this, a more in-depth understanding
of the relevant dependencies is required than the preliminary re-
sults reported here, and this is the subject of ongoing research.
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Abstract
Most state-of-the-art solutions to sound signal processing tasks
such as the speech and noise separation task and the music
style classification task are based on Recurrent Neural Network
(RNN) architecture or Hidden Markov Model (HMM). Both
RNN and HMM assume that the input is chain-structured so
that each element in the chain is equally dependent on all its
previous units. However in real-life scenes the units alone do
not carry much meaning. Only when several units group to be
segments will they be semantically informative. This character-
istic of sound signals clearly prefers emphasizing dependencies
among units in the same segment, which leads to a natural selec-
tion of tree-structured models instead of chain-structured ones.
In this paper we introduce Seq2Tree network and two models
based on Seq2Tree architecture solving 1) speech and noise sep-
aration task and 2) music style classification task, respectively.
Experiments show that our Seq2Tree-based models outperform
the state-of-the-art systems in both tasks, which agrees with our
hypothesis that sound signals have potential tree-structured de-
pendencies among their sound elements. Also the experiment
results prove the advancement of the Seq2Tree network archi-
tecture in sound signal processing tasks.
Index Terms: speech and noise separation, music signal pro-
cessing, deep learning, seq2tree network

1. Introduction
Traditional models on sound signal processing tasks rely heav-
ily on the global chain-structured dependency among the units
in the signal. Such models include models based on Recur-
rent Neural Network (RNN) or Hidden Markov Model (HMM).
It is true that the temporally successive units are related to
each other, but the assumption of the chain-structured depen-
dency requires the units to be semantically meaningful. In most
sound signal processing tasks this is not fulfilled. For exam-
ple phonemes in a piece of speech cannot express any meaning
without being grouped to be words. This property of units in
sound signal processing tasks violates the prerequisite of using
chain models so undermines their performances on these tasks.

We call the tasks in which units have to be combined with
their neighbors to carry semantic meanings segment process-
ing tasks. The two tasks we choose to tackle in this paper are
both segment processing tasks. In the speech and noise sepa-
ration task clearly the signal has to be modeled by a sequence
of words in speech, intertwined with noise fractions from vari-
ous sources. In the music classification task the characteristics
of music styles are uncovered by the patterns of combinatorial

use of chords so it is important to abstract segments of related
chords into one object in the signal.

Figure 1: A three-layered tree structure generated from a
Seq2Tree model. Hidden states of lower-level nodes are inher-
ited from parent nodes. The root node of every subtree summa-
rizes the output from its children nodes.

In segment processing tasks since local relatedness is em-
phasized, the signals naturally prefer a tree structure where only
locally related nodes appear in the same subtree. The start node
of a segment appears as the root node of a subtree formed by the
following nodes in the segment. Nodes on the same level obeys
the chain dependency rule. An example of this tree structure is
shown in Figure 1. Existing networks like Tree-LSTM[1] and
Multilayer Seq2Seq [2] either require known dependency trees
or can only build trees with fixed height at every time step, so
neither of them are appropriate in solving segment processing
problems. Thus we introduce a neural network structure which
builds up such a tree, as is shown in Figure 1, from sequential
input. We call this neural network structure Seq2Tree network.
The Seq2Tree network should be the standard solution to seg-
ment processing tasks since the tree it builds correctly models
the signals in segment processing tasks.

Seq2Tree network is able to build up the temporally ex-
panding tree by passing the input data and the previous states
to a direction selection gate before any other operation. The
direction selection gate chooses the direct parent of the current
state, thus decides the level on which the current state should
be put. Seq2Tree network also has an update phase at the end
of processing each state. These two features enable Seq2Tree
network to deal with segment processing tasks better than any
existing RNN network structure. We prove the correctness and
efficiency of Seq2Tree network over Long Short Term Mem-
ory (LSTM), a most commonly used RNN variant, as well as
the state-of-the-art models in both tasks using our experimental
results generated from the same training/test separations of the
corpora with the same set of network parameters. The data for
the speech and noise separation task comes from the CHiME
challenge [3]. The music data for our evaluation is sampled by
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ourselves from the Million Song Dataset [4].
Current state-of-the-art system for the speech and noise

separation task is based on Bidirectional LSTM network.[5]
Bidirectional LSTM makes the same assumption over the input
data as the ordinary LSTM network. The difference is that Bidi-
rectional LSTM incorporates future hidden states to the predic-
tion at a previous step.[6] In the music style classification task
most of the evaluations have been done over datasets collected
by the author, so there exists a lot of randomness. From our
selected papers we found that the state-of-the-art results in age-
and region-based music classification tasks are both achieved by
classifiers based on HMM[7], while the state-of-the-art system
in the composer-based music style classification task uses deep
feed forward network[8]. In the feed forward neural network
model all weights on each layer are shared, which means that
the model treats the note at each time step in the same way. This
characteristic limits the feed forward neural network’s ability to
discover segment-level features of the input data. The RNN and
HMM based systems also face this problem.

Experiments show that Seq2Tree network generates com-
parable or better results as LSTM network, while it also beats
the state-of-the-art systems on both tasks. This proves that
Seq2Tree network is more powerful in modeling noisy speech
signals and music signals and could produce the state-of-the-art
results in tasks related to these two fields.

2. Seq2Tree Network

Figure 2: Seq2Tree network architecture. Left part of the figure
is the parent selection gate. hparents and cparents are inherited
from the former state. The right half includes the hidden state
calculation and parent hidden state updating mechanism.

Original RNN’s are based on the assumption that the in-
put data is chain-structured. However this assumption does not
agree with most real-life scenes. For example, in music signal
streams, the chords make more sense when they are grouped
to be bars or even longer segments. This weakens the perfor-
mances of RNN’s on sound signal processing tasks. In fact ac-
cording to our experimental results, the model based on Long
Short Term Memory(LSTM)[9], an RNN architecture, performs
similarly to HMM models.

Thus we come up with a neural network which is better
at modeling real-life sound signals by discovering the tree-
structured dependency paths among input units. We call this
neural network architecture Seq2Tree. In the tree Seq2Tree con-
structs, children nodes in a subtree inherit the state from their
parent node, and the local nodes in the same level of a sub-
tree passes hidden states. This structure efficiently emphasizes
the connections among local nodes under the same parent node,
which agrees with the features of real-life music signals.

Seq2Tree builds up the tree structure instead of a chain-
structured output by adding one branching phase before get-

ting the previous state. The branching operation gives each
node more freedom in choosing the parent node to follow. A
branching gate d is used to control the parent-selection opera-
tion. Transition functions of Seq2Tree network is as follows:

dkt = θ(σ(W (d)xt + U (d)hk + b(d))),

hparent =
∏

dkt=0

dkthk + d(k−1)thk−1,

it = σ(W (i)xt + U (i)hparent + b(i)),

ft = σ(W (f)xt + U (f)hparent + b(f)),

ot = σ(W (o)xt + U (o)hparent + b(o)),

ut = tanh(W (u)xt + U (u)hparent + b(u)),

ct = it � ut + ft � ct−1,

ht = ut � tanh(ct),

∆ft = σ(W (f)xt + U (f)ht + b(f)),

∆ct = ∆ft � ct,

clt = clt + ∆ct −
l−1∑

i=0

ui∆ct,

hlt = olt � tanh(clt).

where θ stands for a binary thresholding function, kt indexes all
the ancestor nodes including the previous state and lt is in the
range of the current node’s ancestors. hparent is the selected
parent node from the set hparents ∪ ht−1. i, f, o, u, c are the
LSTM gates and the memory cell, respectively, and the W,U, b
matrices are the weights. The new node keeps climbing up its
ancestor path till the direction gate dkt becomes non-negative.
Node pk−1 is then selected to be the parent node of the current
node when the algorithm stops, or when it reaches node on the
highest level of the tree.

3. Tasks
3.1. Speech and Noise Separation

As is defined in the Second CHiME Challenge[3, 10], the
goal of speech and noise separation task is to predict a time-
frequency mask, when given a piece of noisy speech audio,
that minimizes the energy of noise when applied to the origi-
nal speech signal.

The current state-of-the-art system for this task uses Bidi-
rectional LSTM network structure[5]. Compared to the original
LSTM network, Bidirectional LSTM incorporates future infor-
mation to the prediction at each time step. This helps the Bidi-
rectional LSTM model bound the range of noise signals.

However different types of noises follow different sets of
patterns. Bidirectional LSTM is not able to detect the noise
type when multiple noise signals overlap with each other, which
harms their prediction performance in more complex situations.

Based on the structural features of the speech signals, we
found that Seq2Tree network is more suitable for the speech
and noise separation task. The benefit of applying Seq2Tree
architecture is that in the generated tree structure, overlapped
noise signals can be separated into nested layers, which helps
preserve the pattern of noise from a single source.

3.2. Music Style Classification

Compared to speech recognition tasks, input signals in music-
related tasks are often more regularized and easier to predict.
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To emphasize this feature and to be consistent with our baseline
systems, we treat the input music signals as sequences of notes.
The notes are represented using their pitch class.

Previous works in this task mainly focus on extracting fea-
tures from fractions of the input sequence. This leads to a
trend of combining HMM with a classification algorithm such
as Naive Bayes Classifier or AdaBoost, as is used by the cur-
rent state-of-the-art system. Based on the chain-structured in-
put assumption we also implemented a LSTM classifier as our
baseline neural network model. Experiments show that the
LSTM classifier performs comparably well with the state-of-
the-art AdaBoost classification system.

Again we noticed that the melody features in a music piece
are decided by not single notes, but segments of them. This
motivated us to apply Seq2Tree network on music style classifi-
cation task, benefitting from the ability of Seq2Tree architecture
to group notes in adjacent time steps.

4. Models
4.1. Speech and Noise Separation

Our solution to the speech and noise separation task is to build
up the tree structure modeling a real-life speech scene first, then
make a prediction based on the hidden state at each time step by
training a softmax regressor:

maskt = softmax(U (R)ht + b(C))

where U (R) is the regression matrix which is trained on the
CHiME data[10, 11].

The input sound signal is preprocessed into one feature vec-
tor containing the energy in all the frequency bins at each time
step through Fourier Transform. As is suggested by Weninger
et al.[12], we apply two-stage training with the following loss
functions:

J1(t) = − 1

C

c∑

i=1

(maskti − labelti)2

J2(t) = − 1

C

c∑

i=1

(‖xt‖ · (maskti − labelti))2

where c denotes the number of frequency bins, maskti is the
predicted vector mask for bin i at time t, and labelti represents
the gold-standard mask for bin i at time step t.

4.2. Music Style Classification

We apply a trained softmax classifier on top of the root node
of the built tree structure to solve the music style classification
task. The root node is an additional highest level node added
to the tree generated by Seq2Tree network. Its hidden state is
updated by every root state of a non-empty subtree. The final
output is a probability distribution over all possible classes:

p(y|hroot) = softmax(U (C)hroot + b(C)),

ŷ = argmaxy p(y|hroot)

where U (c) is the classification matrix, b(c) represents the bias,
hroot is the hidden state at the root node, and ŷ is the predicted
label of the input.

The loss function we use in this model is the cross entropy
loss of the predicted label ŷ:

J(θ) = − 1

C

C∑

i=1

p(ŷ) · log pθ(ŷ|hroot)

where C is the number of possible classes, p(ŷ) is the proba-
bility that the input music actually belongs to the class ŷ, and
pθ(ŷ|hroot) represents the predicted probability that the music
falls in the class ŷ with the parameter set θ.

5. Experiments and Discussions
5.1. General Settings

In both models we set the dimension of hidden states to be 1024.
For the speech and noise separation experiment we set the input
shape to be 50 time steps with 513 frequency bins at each time
step. In the music style classification task we slice the input note
sequence into batches of size 300, since the input sequences are
of variable length.

5.2. Speech and Noise Separation Experiment

5.2.1. Experiment Setup

In this task, the input is audio waveform, and our goal is to pre-
dict a mask which could minimize the energy of noise when the
mask is applied to the input audio. The audio files are prepro-
cessed using Short Time Fourier Transform (STFT), then the
energy values are filtered into 513 frequency bins. The audio
data is from the CHiMe dataset[10, 11], and we use a 80%/20%
split for training and test sets.

For evaluation we implemented the prediction model de-
scribed in Section 4.1 with Seq2Tree network. In the network,
a prediction is made at each time step, but postorder in the tree
generated by the model. The reason is that the parent state is
ready to output only when the segment is entirely processed.

The overall results for both our model and the baseline sys-
tem are evaluated in terms of Mean Squared Error (MSE), while
we also compare their performances on single audio files using
Overall Perceptual Score (OPS) in this task[13, 14]. The score
is calculated by comparing the energy distribution at each time
interval to that of the gold standard noise-free audio files.

5.2.2. Results and Analysis

The MSE for both our Seq2Tree-based model and the baseline
model are listed in Table 1. The results are recorded after 10-
fold cross validation over the sampled CHiME data.

Model MSE
BLSTM 0.0445331
Seq2Tree 0.0204997

Table 1: Speech and noise separation evaluation results. Aver-
age performance of each model after ten-fold validation.

Clearly, in terms of average performance our model out-
performs our baseline Bidirectional LSTM model. This agrees
with our hypothesis that the speech and noise separation task is
a segment processing task instead of sequence processing task,
and that in this task, local dependencies inside each segment are
more important than global dependency paths.

Though our model using Seq2Tree architecture performs
better than the Bidirectional LSTM model in general, our model
suffers from low performance in the worst case. The best
and worst results of both systems can be found in Table 2.
This should have been caused by incorrect branching operations
when building the tree. Further tuning for the threshold of the
branching gate is needed.
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Model OPS(dB)
BLSTM (Worst Case) 25.01
BLSTM (Best Case) 40.96
Seq2Tree (Worst Case) 26.17
Seq2Tree (Best Case) 62.09

Table 2: Speech and noise separation evaluation results. Ex-
treme case performances of each model.

5.3. Music Style Classification Experiment

5.3.1. Experiment Setup

For the music style classification task we designed three inde-
pendent experiments in order to compare the performance of
our model with the baseline systems. The three experiments
are composer-based music style classification, age-based mu-
sic style classification, and country-based music style classifi-
cation, respectively. Each dataset for the three tasks contain
800 music pieces. Data for every experiment is subject to a
80%/20% training/test separation.

We use the same model for the three experiments. The
model is implemented according to the specifications in Section
4.2. The input is a sequence of notes represented by their pitch
class, and the prediction is made at the root node of the tree built
by our Seq2Tree-based model, after all updates are done. The
results are recorded in terms of classification precision.

5.3.2. Results and Analysis

The country-based music style classification results are re-
flected in Table 3. The overall precision is calculated over all
six classes. We also give the average precision of our model
on binary classification tasks over every of the six countries,
so as to make our results comparable to those of our base-
line systems[15, 8, 7, 16]. Regarding the classification results,
clearly our model performs better than the baseline systems,
with an improvement of nearly 30 in terms of binary classi-
fication precision. Moreover, to prove the advancement of our
model over neural network approaches, we evaluated the perfor-
mance of one LSTM-based model on the same task and corpus.
The results show that in both multi-class and binary classifica-
tion tasks our model outperforms the LSTM model.

Model Precision
HMM (Binary) 77%
HMM (3-class) 63%
LSTM (Binary) 83.33%
Seq2Tree (Binary) 98.26%
LSTM 76.67%
Seq2Tree 94.74%

Table 3: Country-based music style classification results. The
binary classification result is the average precision for every
class.

The encouraging results produced by our Seq2Tree model
which beat all the chain-structured models with the same hyper
parameters support our hypothesis that music signals are tree-
structured. Also they help prove the ability of the Seq2Tree
network to preserve tree-structured dependencies.

For the composer-based music style classification problem

Model Precision
Feed Forward Network (Binary) 97.09%
LSTM (Binary) 90.08%
Seq2Tree (Binary) 99.46%
LSTM 81.27%
Seq2Tree 96.76%

Table 4: Composer-based music style classification results.

we compare the performance of our model with the state-of-the-
art results by the system of Giuseppe Buzzanca [8] using deep
feed forward network. They did only binary classification ex-
periments so we added two experiments using our LSTM model
on both the ten-class classification task and the binary classifi-
cation task, as our baseline. Meanwhile, we are the first to pub-
lish evaluation results in an age-based music style classification
task so we compare our results only with the LSTM system.
Results for the two experiments are shown in Table 4 and Ta-
ble 5, respectively. In both tasks our Seq2Tree-based model
outperforms the state-of-the-art results and our baseline LSTM
system, which is very consistent with the experimental results
in the country-based music style classification task.

Model Precision
LSTM (Binary) 80.13%
Seq2Tree (Binary) 98.75%
LSTM 74.33%
Seq2Tree 96.86%

Table 5: Age-based music style classification results.

6. Conclusion
In this paper we introduce Seq2Tree network to sound signal
processing tasks. Seq2Tree network is able to learn tree-styled
dependency structure from sequential input without the help of
syntactic rules. Compared to other tree-construction neural net-
works such as multilayer Seq2Seq network, Seq2Tree architec-
ture allows the tree it builds to be arbitrarily deep at each time
step, which agrees with real-life sound signals more. Thus we
think that Seq2Tree network is a better choice in sound signal
processing tasks. To show this we designed two experiments
and compared the performances of a Seq2Tree model with the
state-of-the-art system and an LSTM baseline system in each
task. The tasks are 1) a speech and noise separation task and
2) a music style classification task. Experimental results show
that in both tasks the Seq2Tree-based models beat the reported
state-of-the-art results and the performance of the LSTM base-
line system. This clearly supports our claim that Seq2Tree net-
work is more proper for sound signal processing tasks than the
popular sequential systems. Besides sound signal processing
tasks, we believe that Seq2Tree network should work well on
any segment processing task. Further experiments are needed
to prove this.
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